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PREFACE TO THE
SECOND EDITION

In this second edition, many changes have been made based on nine years of classroom
experience. There are major revisions to the first six chapters and the Epilogue, and there
is one completely new chapter, Chapter 14, on differential equations. In addition, the origi-
nal Chapters 11 and 12 have been repackaged as three chapters: Chapter 11 on partial dif-
ferentiation, Chapter 12 on multiple integration, and Chapter 13 on vector calculus.

Chapter 1 has been shortened, and much of the theoretical material from the first
edition has been moved to the Epilogue. The calculus of transcendental functions has been
fully integrated into the course beginning in Chapter 2 on derivatives. Chapter 3 focuses
on applications of the derivative. The material on setting up word problems and on related
rates has been moved from the first two chapters to the beginning of Chapter 3. The theoreti-
cal results on continuous functions, including the Intermediate, Extreme, and Mean Value
Theorems, have been collected in a single section at the end of Chapter 3. The development
of the integral in Chapter 4 has been streamlined. The Trapezoidal Rule has been moved
from Chapter 5 to Chapter 4, and a discussion of Simpson’s Rule has been added. The sec-
tion on area between two curves has been moved from Chapter 6 to Chapter 4. Chapter
5 deals with limits, approximations, and analytic geometry. An extensive treatment of
conic sections and a section on Newton’s method have been added. Chapter 6 begins with
new material on finding a volume by integrating areas of cross sections.

Only minor changes and corrections have been made to Chapters 7 through 13.
The new Chapter 14 gives a first introduction to differential equations, with emphasis on
solving first and second order linear differential equations. In Section 14.4, infinitesimals
are used to give a simple proof that every differential equation y’ = f(t,y), where fis con-
tinuous, has a solution. The proof of this fact is beyond the scope of a traditional elementary
calculus course, but is within reach with infinitesimals.

I wish to thank all my friends and colleagues who have suggested corrections and
improvements to the first edition of the book.

H. Jerome Keisler



PREFACE TO THE
FIRST EDITION

The calculus was originally developed using the intuitive concept of an infinitesimal,
or an infinitely small number. But for the past one hundred years infinitesimals have
been banished from the calculus course for reasons of mathematical rigor. Students
have had to learn the subject without the original intuition. This calculus book is
based on the work of Abraham Robinson, who in 1960 found a way to make infinitesi-
mals rigorous. While the traditional course begins with the difficult limit concept,
this course begins with the more easily understood infinitesimals. It is aimed at the
average beginning calculus student and covers the usual three or four semester
sequence,

The infinitesimal approach has three important advantages for the student.
First, it is closer to the intuition which originally led to the calculus. Second, the
central concepts of derivative and integral become easier for the student to under-
stand and use. Third, it teaches both the infinitesimal and traditional approaches,
giving the student an extra tool which may become increasingly important in the
future.

Before describing this book, I would like to put Robinson’s work in historical
perspective. In the 1670’s, Leibniz and Newton developed the calculus based on the
intuitive notion of infinitesimals. Infinitesimals were used for another two hundred
years, until the first rigorous treatment of the calculus was perfected by Weierstrass
in the 1870’s. The standard calculus course of today is still based on the “¢, d definition”
of limit given by Weierstrass. In 1960 Robinson solved a three hundred year old
problem by giving a precise treatment of the calculus using infinitesimals. Robinson’s
achievement will probably rank as one of the major mathematical advances of the
twentieth century.

Recently, infinitesimals have had exciting applications outside mathematics,
notably in the fields of economics and physics. Since it is quite natural to use infinitesi-
mals in modelling physical and social processes, such applications seem certain to
grow in variety and importance. This is a unique opportunity to find new uses for
mathematics, but at present few people are prepared by training to take advantage of
this opportunity.

Because the approach to calculus is new, some instructors may need addi-
tional background material. An instructor’s volume, “Foundations of Infinitesimal
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Calculus,” gives the necessary background and develops the theory in detail. The
instructor’s volume is keyed to this book but is self-contained and is intended for the
general mathematical public.

This book contains all the ordinary calculus topics, including the traditional
limit definition, plus one exua tool—the infinitesimals. Thus the student will be
prepared for more advanced courses as they are now taught. In Chapters 1 through 4
the basic concepts of derivative, continuity, and integral are developed quickly using
infinitesimals. The traditional limit concept is put off until Chapter 5, where it is
motivated by approximation problems. The later chapters develop transcendental
functions, series, vectors, partial derivatives, and multiple .integrals. The theory
differs from the traditional course, but the notation and methods for solving practical
problems are the same. There is a variety of applications to both natural and social
sciences.

I have included the following innovation for instructors who wish to intro-
duce the transcendental functions early. At the end of Chapter 2 on derivatives, there
is a section beginning an alternate track on transcendental functions, and each of
Chapters 3 through 6 have alternate track problem sets on transcendental functions.
This alternate track can be used to provide greater variety in the early problems, or
can be skipped in order to reach the integral as soon as possible. In Chapters 7 and 8
the transcendental functions are developed anew at a more leisurely pace.

The book is written for average students. The problems preceded by a square
box go somewhat beyond the examples worked out in the text and are intended for
the more adventuresome.

I was originally led to write this book when it became clear that Robinson’s
infinitesimal calculus could be made available to coliege freshmen. The theory is
simply presented; for example, Robinson’s work used mathematical logic, but this
book does not. I first used an early draft of this book in a one-semester course at the
University of Wisconsin in 1969. In 1971 a two-semester experimental version was
published. It has been used at several colleges and at Nicolet High School near
Milwaukee, and was tested at five schools in a controlled experiment by Sister Kathleen
Sullivan in 1972-1974. The results (in her 1974 Ph.D. thesis at the University of
Wisconsin) show the viability of the infinitesimal approach and will be summarized
in an article in the American Mathematical Monthly.

I am indebted to many colleagues and students who have given me encourage-
ment and advice, and have carefully read and used various stages of the manuscript.
Special thanks are due to Jon Barwise, University of Wisconsin; G. R. Blakley,
Texas A & M University; Kenneth A. Bowen, Syracuse University; William P.
Francis, Michigan Technological University; A. W. M. Glass, Bowling Green
University; Peter Loeb, University of Illinois at Urbana; Eugene Madison and
Keith Stroyan, University of Iowa; Mark Nadel, Notre Dame University; Sister
Kathleen Sullivan, Barat College; and Frank Wattenberg, University of Massa-
chusetts.

H. Jerome Keisler
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INTRODUCTION

While arithmetic deals with sums, differences, products, and quotients, calculus
deals with derivatives and integrals. The derivative and integral can be described in
everyday language in terms of an automobile trip. An automobile instrument panel
has a speedometer marked off in miles per hour with a needle indicating the speed.
The instrument panel also has an odometer which tallies up the distance travelled in
miles (the mileage).

40 50 g0
30 70

20 80
10 920

0 - 100
Speedometer—derivative

[ole[e]2]s]2]

Odometer—integral

Both the speedometer reading and the odometer reading change with time;

that is, they are both “functions of time.” The speed shown on the speedometer is
the rate of change, or derivative, of the distance. Speed is found by taking a very small
interval of time and forming the ratio of the change in distance to the change in time.
The distance shown on the odometer is the integral of the speed from time zero to the
present. Distance is found by adding up the distance travelled from the first use of the
car to the present.

The calculus has a great variety of applications in the natural and social
sciences. Some of the possibilities are illustrated in the problems. However, future
applications are hard to predict, and so the student should be able to apply the
calculus himself in new situations. For this reason it is important to learn why the
calculus works as well as what it can do. To explain why the calculus works, we
present a large number of examples, and we develop the mathematical theory with
great care.

xi
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REAL AND
HYPERREAL
NUMBERS

Chapter 1 takes the student on a direct route to the point where it is possible to
study derivatives. Sections 1.1 through 1.3 are reviews of precalculus material and
can be skipped in many calculus courses. Section 1.4 gives an intuitive explanation
of the hyperreal numbers and how they can be used to find slopes of curves. This
section has no problem set and is intended as the basis for an introductory lecture.
The main content of Chapter 1 is in the last two sections, 1.5 and 1.6. In these
sections, the student will learn how to work with the hyperreal numbers and in
particular how to compute standard parts. Standard parts are used at the beginning
of the next chapter to find derivatives of functions. Sections 1.5 and 1.6 take the
place.of the beginning chapter on limits found in traditional calculus texts.

For the benefit of the interested student, we have included an Epilogue at
the end of the book that presents the theory underlying this chapter.

THE REAL LINE

Familiarity with the real number system is a prerequisite for this course. A review of
the rules of algebra for the real numbers is given in the appendix. For convenience,
these rules are also listed in a table inside the front cover. The letter R is used for
the set of all real numbers. We think of the real numbers as arranged along a straight
line with the integers (whole numbers) marked off at equal intervals, as shown in
Figure 1.1.1. This line is called the real line.

—_—
-4 -3 -2 -1 0 1 2 3 4

Figure 1.1.1 The real line.

In grade school and high school mathematics, the real number system is
constructed gradually in several stages. Beginning with the positive integers, the
systems of integers, rational numbers, and finally real numbers are built up. One
way to construct the set of real numbers is as the set of all nonterminating decimals.
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After constructing the real numbers, it is possible to prove the familiar rules for
sums, differences, products, quotients, exponents, roots, and order. In this course,
we take it for granted that these rules are familiar to the student, so that we can
proceed as quickly as possible to the calculus.

Before going on, we pause to recall two special points that are important
in the calculus. First, division by zero is never allowed. Expressions such as

2 0 X 5
00 0 0 1+3-4
are always considered to be undefined.
Second, a positive real number ¢ always has two square roots, \/Z and

-./¢, and \/Z always stands for the positive square root. Negative real numbers
do not have real square roots. For each positive real number c, \ﬁ is positive and

/ —c is undefined.

On the other hand, every real number has one real cube root. If ¢ > 0, ¢
has the positive cube root \3/2, and —c has the negative cube root j/: = —Ye

In calculus, we often deal with sets of real numbers. By a set S of real numbers,
we mean any collection of real numbers, called members of S, elements of S, or
points in S.

A simple but important kind of set is an interval. Given two real numbers
a and b with a < b, the closed interval [a, b] is defined as the set of all real numbers
x such that ¢ < x and x < b, or more concisely, a < x < b.

The open interval (a, b) is defined as the set of all real numbers x such that

a < x < b. Closed and open intervals are illustrated in Figure 1.1.2.

v y 1
a- p
The closed interval [a, b]

A
7b

P oS

a
Figure 1.1.2 The open interval (a, b)

For both open and closed intervals, the number a is called the lower endpoint,
and b the upper endpoint. The difference between the closed interval [a, b] and the
open interval (a, b) is that the endpoints a and b are elements of [a, b] but are not
elements of (a, b). When a < x < b, wesay that x is berweenaand b;whena < x < b,
we say that x is strictly between a and b.

Three other types of sets are also counted as open intervals: the set (a, 20) of
all real numbers x greater than a; the set (— oo, b) of all real numbers x less than b,
and the whole real line R. The real line R is sometimes denoted by (—oc, 20). The
symbols o and — oo, read “infinity” and “minus infinity,” do not stand for numbers;
they are only used to indicate an interval with no upper endpoint, or no lower
endpoint.

Besides the open and closed intervals, there is one other kind of interval,
called a half~open interval. The set of all real numbers x such that @ < x < bis a half-
open interval denoted by [a, b). The set of all real numbers x such that g < xisalsoa
half-open interval and is written [a, o). Here is a table showing the various kinds of
intervals,
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Table 1.1.1 Kinds of Intervals

Type Symbol Defining Formula
Closed (a,b] a<x=<b
Open (a, b) a<x<b
Open (a, o) a<x
Open (—o0,b) x<b
Open (— o0, 00)

Half-open [a,B) a<x<b
Half-open {a, 00) a<x
Half-open (a, b] a<x<b
Half-open (—co, b] x<b

We list some other important examples of sets of real numbers.

(1) The empty set ¢, which has no elements.

(2) The finite set {a,,...,a,}, whose only elements are the numbers
Ay, lysenns

(3) The set of all x such that x # 0.

(4) Theset N = {1,2,3,4,...} of all positive integers.

(5) ThesetZ =1{..,-3,-2,—-1,0,1,2,3,...} of all integers.

(6) The set Q of all rational numbers. A rational number is a quotient
m/n where m and n are integers and n # 0.

While real numbers correspond to points on a line, ordered pairs of real
numbers correspond to points on a plane. This correspondence gives us a way to
draw pictures of calculus problems and to translate physical problems into the
language of calculus. It is the starting point of the subject called analytic geometry.

An ordered pair of real numbers, (a, b), is given by the first number a and the
second number b. For example, (1, 3), (3, 1), and (1, 1) are three different ordered pairs.
Following tradition, we use the same symbol for the open interval (g, b) and the
ordered pair (a,b). However the open interval and ordered pair are completely
different things. It will always be quite obvious from the context whether (g, b) stands
for the open interval or the ordered pair.

We now explain how ordered pairs of real numbers correspond to points in
a plane. A system of rectangular coordinates in a plane is given by a horizontal and a
vertical copy of the real line crossing at zero. The horizontal line is called the horizontal
axis, or x-axis, while the vertical line is called the vertical axis, or y-axis. The point
where the two axes meet is called the origin and corresponds to the ordered pair (0, 0).
Now consider any point P in the plane. A vertical line through P will cross the x-axis
at a real number x,, and a horizontal line through P will cross the y-axis at a real
number y,. The ordered pair (x,, y,) obtained in this way corresponds to the point P.
(See Figure 1.1.3.) We sometimes call P the point (x,, y,) and sometimes write
P(x,, yo)- Xo is called the x-coordinate of P and y, the y-coordinate of P.

Conversely, given an ordered pair (x,, y,) of real numbers there is a corre-
sponding point P(x,, yo) in the plane. P(x,, y,) is the point of intersection of the
vertical line crossing the x-axis at x,, and the horizontal line crossing the y-axis at y,,.
We have described a one-to-one correspondence between all pointsin the plane and all
ordered pairs of real numbers.

From now on, we shall simplify things by identifying points in the plane with
ordered pairs of real numbers, as shown in Figure 1.1.4.
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Y y
D 7 P(xo, Yo) (U —2(x, »)
I I
I I
| |
I !
©, 0 Xo x 0, 0 (x,0) X
Figure 1.1.3 Figure 1.1.4
DEFINITION

The (x,y) plane is the set of all ordered pairs (x, v) of real numbers. The origin
is the point (0,0). The x-axis is the set of all points of the form (x, 0), and the
v-axis is the set of all points of the form (0, y).

The x- and y-axes divide the rest of the plane into four parts called quadrants.
The quadrants are numbered [ through IV, as shown in Figure 1.1.5.

In Figure 1.1.6, P(x,, y,) and Q(x,, y,) are two different points in the (x, y)
plane. As we move from P to Q, the coordinates x and y will change by amounts that
we denote by Ax and Ay. Thus

changein x = Ax = x, — Xy,
changein y = Ay =y, — y,.
The quantities Ax and Ay may be positive, negative, or zero. For example, when

X, > Xy, Ax is positive, and when v, < x,, Ax is negative. Using Ax and Ay we define
the basic notion of distance.

Y
11 [
x<0,y>0 x>0,y>0
P
1 v
x<0,y<0 x>0, y<0 O P
Figure 1.1.6 Quadrants Figure 1.1.6
DEFINITION

The distance berween the poinrs P(x .y ) and Q(x,, y,) is the quantiry

distance (P, Q) = /(Ax)? + (Ay)> = /(x; — x> + (32 — y1)*

When we square both sides of the distance formula, we obtain

[distance (P, Q)]* = (Ax)? + (Ay)~
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One can also get this formula from the Theorem of Pythagoras in geometry: The
square of the hypotenuse of a right triangle is the sum of the squares of the sides.

eXAMPLE 1 Find the distance between P(7,2) and Q(4, 6) (see Figure 1.1.7).
Ax=4—-T7= -3, Ay=06—-2=4

distance (P, Q) = /(—3)® + 4% = 5.

We often deal with sets of points in the plane as well as on the line. One
way to describe a set of points in the plane is by an equation or inequality in two
variables, say x and y. A solution of an equation in x and y is a point (xq, yo) in
the plane for which the equation is true. The set of all solutions is called the locus,
or graph, of the equation. The circle is an important example of a set of points in
the plane.

y 0(4,6)

Ay

P(7,2)
X

Figure 1.1.7

DEFINITION OF CIRCLE

The set of all points in the plane at distance r from a point P is called the circle
of radius v and center P.

Using the distance formula, we see that the circle of radius r and center at the
origin (Figure 1.1.8) is the locus of the equation

x* + yr =7

The circle of radius r and center at P(h, k) (Figure 1.1.8) is the locus of the equation

el

(x —h)? + (v — k> =1

(h, k)

-
VA x

Figure 1.1.8 xt4yt=1r2 (x—h? 4+ (y—k?=r?




6 1 REAL AND HYPERREAL NUMBERS

For example, the circle with radius 3 and center at P(2, —4) has the equation

(x=22+(r+4>=9.
PROBLEMS FOR SECTION 1.1

In Problems 1-6, find the distance between the points P and Q.

1 P(2,9), 0(—1,13) 2 P(1, —2), 0(2,10)
3 P(0,0), 0(-2, —-3) 4 P(—1,-1),04,4)
5 P, 1), Q(—=7,1) 6 P(5, 10), Q(9, 10)
Sketch the circles given in Problems 7-12.
7 x2 4+t =4 8 xP 4yt =g
9 x—D*+(+27=1 10 x+2D*+(y+3?2=9
11 x-D*+(@-1*=2 12 (x+3)+@—-472=25
13 Find the equation of the circle of radius 2 with center at (3, 0).
14 Find the equation of the circle of radius \/5 with center at (— 1, —2).
O 15 There are two circles of radius 2 that have centers on the line x = [ and pass through
the origin, Find their equations.
O 16 Find the equation of the circle that passes through the three points (0, 0), (0, 1), (2, 0).
O 17 Find the equation of the circle one of whose diameters is the line segment from (—1, 0)
to (5, 8).

1.2 FUNCTIONS OF REAL NUMBERS

The next two sections are about real numbers only. The calculus deals with problems
in which one quantity depends on one or more others. For example, the area of a
circle depends on its radius. The length of a day depends on both the latitude and the
date. The price of an object depends on the supply and the demand. The way in which
one quantity depends on one or more others can be described mathematically by a
function of one or more variables.

DEFINITION

A real function of one variable is a set f of ordered pairs of real numbers such
that for every real number a one of the following two things happens:

(i) There is exactly one real number b for which the ordered pair (a, b) is a
member of [ In this case we say that f(a) is defined and we write f(a) = b.
The number b is called the value of f at a.

(i) There is no real number b for which the ordered pair (a, b) is a member of
[ In this case we say that f(a) is undefined.

Thus f(a) = b means that the ordered pair (a, b) is an element of f.

Here is one way to visualize a function. Imagine a black box labeled f as in
Figure 1.2.1. Inside the box there is some apparatus, which we can’t see. On both the
left and right sides of the box there is a copy of the real line, called the input line and
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a9
/ f@
R R
Input Output
Figure 1.2.1 line line

output line, respectively. Whenever we point to a number a on the input line, either
one point b will light up on the output line to tell us that f(a) = b, or else nothing will
happen, in which case f(a) is undefined.

A second way to visualize a function is by drawing its graph. The graph of a
real function f of one variable is the set of all points P(x, y) in the plane such that
y = f(x). To draw the graph, we plot the value of x on the horizontal, or x-axis and
the value of f(x) on the vertical, or y-axis. How can we tell whether a set of points in
the plane is the graph of some function? By reading the definition of a function again,
we have an answer.

A set of points in the plane is the graph of some function f if and only if for
each vertical line one of the following happens:

(1) Exactly one point on the line belongs to the set.
(2) No point on the line belongs to the set.

A vertical line crossing the x-axis at a point a will meet the set in exactly one
point (a, b) if f(a) is defined and f(a) = b, and the line will not meet the set at all if
f(a) is undefined. Try this rule out on the sets of points shown in Figure 1.2.2.

y ¥ y
.
.
.

’\/x ‘l x

Not graphs of functions
Figure 1.2.2
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Here are two examples of real functions of one variable. Each function will
be described in two ways: the black box approach, where a rule is given for finding
the value of the function at each real number, and the graph method, where an
equation is given for the graph of the function.

EXAMPLE 1 The square function.
The square function is defined by the rule

Jx) = x?
for each number x. The value of f(a) is found by squaring a. For instance, the
values of f(0), f(2), f(—3), f(), f(r + 1) are
JO =0 j2)=4  f(=3)=09,
f=r S+ D=r2+2r+ 1

The graph of the square function is the parabola with the equation y = x2.
The graph of y = x?, with several points marked in, is shown in Figure 1.2.3.

EXAMPLE 2 The reciprocal function.
The reciprocal function g is given by the rule

1
glx) = —-
X

g(x) is defined for all nonzero x, but is undefined at x = 0. Find the following
values if they are defined: g(0), g(2), g(—%), g@@), g(r + 1).

2(0) is undefined, g2)=3%. g% = -3

1
7y — i~ . 1) = )
8@ =3 gir + 1) r 1
The graph of the reciprocal function has the equation y = [/x. This equation
can also be written in the form xy = 1. The graph is shown in Figure 1.2.4.

In Examples 1 and 2 we have used the variables x and y in order to describe

a function. A variable is a letter which stands for an arbitrary real number; that is, it

“varies” over the real line. In the equation y = x?, the value of y depends on the value

of x; for this reason we say that x is the independent variable and y the dependent
variable of the equation.

y

(-2, 4) 2,4

1
(._2! — )
( 19 1)

(-1, -2

(=1, 1 (LD
©,0 *

xy=1

y=xt

Figure 1.2.3 Figure 1.2.4
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In describing a function, we do not always use x and y; sometimes other
variables are more convenient, especially in problems involving several functions.
The variable ¢ is often used to denote time.

It is important to distinguish between the symbol f and the expression f(x).
[ by itself stands for a function. f(x) is called a term and stands for the value of the
function at x. The need for this distinction is illustrated in the next example.

EXAMPLE 3 Let h be the function given by the rule

Figure 1.2.5

h) =6 + 1.

t is a variable, h is a function, and h(¢) is a term. The following expressions
are also terms: A(), h(x), h(t®), h(t®) + 1, h(t® + 1), h(x) — h(t), h(t + A1),
h(t + At) — h(?). Find the values of each of these terms.

The values are computed by careful substitution.

h3) =GP +1=13.
h(x) = x> + 1.
We)y=@EP +1 =12+ 1.
Y +1=[P +1]+1=1 42
e+ D=+ 1P+ 1= 4+3°+33+2
hx)—h)=[x*+ 1] -+ 1]=x* - %
it + Ay = + A1) + 1 =13 + 32 At + 3t A2 + A + 1.
h(t + A) — h(t) = [(¢t + At + 1] — [£3 + 1]
=[* + 32 At + 3t A? + AP + 1] = [P + 1]
=312 At + 3t Ar? + A,

The graph of h is given by the equation x = t> 4 1. In this equation, t is the
independent variable and x is the dependent variable. In Figure 1.2.5, the

five points

W-=1)=0, h-p=% HO=1 h3)=1, h1)=2
are plotted and the graph is drawn.

X

(1,2
0,1

-1 ©2 (1 1L)

( 2* 8) 278
(=10 !
x=1+1
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DEFINITION

The domain of a real function [ of one variable is the set of all real numbers x
such that f(x) is defined. :

The range of [ is the set of all values f(x) where x is in the domain of f.

EXAMPLE 1 (Continued) The domain of the square function is the set R of all real
numbers. The range is the interval [0, o) of all nonnegative reals.

EXAMPLE 2 (Continued) Both the domain and the range of the reciprocal function
are equal to the set of all real x such that x # 0.

When a function is described by a rule, it is understood that the domain is
the set of all real numbers for which the rule is meaningful.

EXAMPLE 3 (Continued) The function h given by the rule
hty=1+1

has the whole real line as its domain and as its range.

EXAMPLE 4 Let f be the function given by the rule

f) =T =x%
Thus f(x) is the positive square root of I — x2. The domain of f is the closed
interval [— 1, 1]. The range of fis [0, 1].
For instance,
f(—2)is undefined, f(—1) =0, f0) =1,

& =3, f()=0,  f(2)is undefined.
The graph of [ is given by the equation y = . /1 —x2.
The equation can also be written in the form

x2+yr=1, y=0.

The graph is just the upper half of the unit semicircle, shown in Figure 1.2.6.

1N

x?+y?=1
Figure 1.2.6 y20
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Sometimes a function is described by explicitly giving its domain in addition
to a rule.

EXAMPLE 5 Let g be the function whose domain is the closed interval [1, 2] with the
rule

g(x) = x%

The domain and rule can be written in concise form with an equation and
extra inequalities,

g(x) = x?, 1<x<2
Note that
2(0) is undefined g(ly=1
g(2) =4 g(3) is undefined.
The graph is described by the formulas
y = x2, 1l<x<2

and is drawn in Figure 1.2.7.

Some especially important functions are the constant functions, the identity
function, and the absolute value function.

A real number is sometimes called a constant. This name is used to emphasize
the difference between a fixed real number and a variable.

For a given real number ¢, the function f with the rule

fx)=c

is called the constant function with value c. It has domain R and range {c}.

EXAMPLE 6 The constant function with value 5 is described by the rule
fx) =5.
Thus f(0)y=>5, f(=3) =5, £(1,000,000) = 5.
The graph (Figure 1.2.8) of the constant function with value 5 is given by the

equation y = 5.

Y @, 4)

39
(2’ 4) y

(3,5 0,5 @10,5)

y=35
Figure 1.2.7 Figure 1.2.8
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EXAMPLE 7 The function f given by the rule
flx)=x
is called the identity function.

The graph (Figure 1.2.9) of the identity function is the straight line with the
equation y = x.

Y
(2,2
1, 1
0,0 x
(=1, -1
y=Xx
Figure 1.2.9

The absolute value function is defined by a rule which is divided into two

cases.
DEFINITION
The absolute value function| | is defined by
x ifx=0.
M=4 =
—x ifx<0O.

The absolute value of x gives the distance between x and 0. It is always
positive or zero. For example,

3=3 [-3=3 =0

The domain of the absolute value function is the whole real line R while its range is the
interval [0, =¢).
The absolute value function can also be described by the rule

’Xl:\/P

Its graph is given by the equation y = ,/x?. The graph is the V shown in Figure 1.2.10.

(-2,2) 2,2

(=110 (1, D

(0, 0) x
y=1x|

Figure 1.2.10
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If a and b are two points on the real line, then from the definition of |x| we see that
a—>b ifax=b
—_— b = - ’
la — bl {b —a ifb>a

Thus |a — b| is the difference between the larger and the smaller of the two numbers.
In other words, |a — b| is the distance between the points g and b, as illustrated in
Figure 1.2.11.

a

F—ta-o—] jiﬂa—m—j

Figure 1.2.11

For example, |2 — 5] = 3, |4 — (—4)| = 8. Here are some useful facts about absolute
values.

THEOREM 1

Let a and b be real numbers.
@ 1—al = al.

(i) lab| = la| - |bl.

(iii) If b # O, |a/b] = |al/|b|.

PROOF We use the equation |x| = /x>

Q) |—d = (=a? = /a* =al
(i) labl = /(@) = \/a®b® = \Ja /b7 = |a| - |b).

(ifi) The proof is similar to (ii).

Warning The equation |a + b| = |a| + |b| is false in general. For example,

2 4+ (—=3) =1, while [2| + [(—3)] = 5.

Functions arise in a great variety of situations. Here are some examples.

Geometry:
nr? = area of a circle of radius r
4nr? = surface area of a sphere of radius r
47 = volume of a sphere of radius »
sin 6 = the sine of the angle 0
Physics:

s(f) = distance a particle travels from time O to ¢
o(t) = velocity of a particle at time ¢

a(t) = acceleration of a particle at time ¢

p(y) = water pressure at depth y below the surface

C = 3(F — 32) = Celsius temperature as a
function of Fahrenheit temperature

13
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Economics:

f(t) = population at time ¢

p(t) = price of a commodity at time ¢

¢(x) = cost of x items of a commodity

D(p) = demand for a commodity at price p, i.e., the
amount which can be sold at price p

Functions of two or more variables can be dealt with in a similar way, Here
is the precise definition of a function of two variables.

DEFINITION

A real function of two variables is a set [ of ordered triples of real numbers
such that for every ordered pair of real numbers (a, b) one of the following two
things occurs:

(i) There is exactly one real number c for which the ordered triple (a, b, ¢) is
a member of f. In this case, f(a, b) is defined and we write:

fla, b) =

(il There is no real number ¢ for which the ordered triple (a, b, ¢) is a member
of f. In this case f(a, b) is called undefined.

If f is a real function of two variables, then the value of f(x, y) depends on
both the value of x and the value of y when f(x, y) is defined.

A real function f of two variables can be visualized as a black box with two
input lines and one output line, as in Figure 1.2.12.

Xy z
¢b
s
fla, b)
a
input output
Figure 1.2.12 lines line

The domain of a real function f of two variables is the set of all pairs of real
numbers (x, y) such that f(x, y) is defined.

The most important examples of real functions of two variables are the sum,
difference, product, and quotient functions:

fy)=x+y.  flx,y)=xy
S =x—=y.  flxy)=x/y.

The sum, difference, and product functions have the whole plane as domain. The
domain of the quotient function is the set of all ordered pairs (x, y) such that y # 0.
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Here are some examples of functions of two or more variables arising in
applications.

Geometry:
ab = area of a rectangle of sides ¢ and b
abc = volume of a rectangular solid
1bh = area of a triangle with base b and height h
ar*h = volume of a cylinder with circular base of radius r and height &
inr2h = volume of a cone with circular base of radius r and height h
/x* + y? = distance from the origin to (x, y)
Physics:
F = ma = force required to give a mass m an acceleration a
p(x, v, z) = density of a three-dimensional object at the point (x, y, z)
F = Gmym,/s* = gravitational force between objects of mass m,; and m, at

distance s
mo . . . . .
m=———— = relativistic mass of an object with rest mass m, and
V1 =ve velocity v
Economics:

c(x, y) = cost of x items of one commodity and y items of another
commodity

D,(p;.p,) = demand for commodity one when commodity one has price p;
and commodity two has price p,

PROBLEMS FOR SECTION 1.2

For each of the following functions (Problems 1-8), make a table showing the value of f(x)

when x = —~1, —1, 0,4, 1. Put a * where f(x) is undefined. Example:
1 x | -1 =% 0o 3 1
™= & l[ -1 -2 * 2 1
1 f(xy=x/3 2 Jxy=3
3 fx)=3x*—-5x*+2 4 f)=1/(x—-1)
5 fw=J-x 6 f)=Ix|
7 JE) =1x =3+ [x + 3
8 f)=x* -1
9 Is the set of ordered pairs {(3, 2), (0, 1), (4, 2)} a function?
10 Is the set of ordered pairs {(0, 2), (3, 6), (3,4)} a function?
11 If f is the function f(x) = 1 + x + x2, find £(2), f(5), f(t + Ar), f(1 + ¢ + %), f(g(®)).

12 IE£(x) = 1/x, find £(£), f(t + At), £(£2), £(1/0), f (g(2)-
13 Iff(x) = x/x, find (), £ (¢ + A0, (2, f /1), f(8 ().
14 Iff(x) = ax + b, find f(ct + d), f(¢*), £ (1/0),  (t/a), f(&(2)-

For each of the following functions (Problems 15-20), find f(x + Ax) — f(x).
15 fx)=4x +1 16 f(x)=x*-x
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17 fx)=x"2 18 f(x) = x*
19 fe0=1x 0 fx)=4
21 Find the domain of the function f(x) = 1/(x* — 1).
22 Find the domain of the function f(z) = ./z* — 1.
23 What is the domain of the function f(x) = \ﬂ”
24 What is the domain of the function f'(¢) = \/m ?
25 What is the domain of the function f(x) = 1/./1 — x*?
O 26 Show that if @ and b have the same sign then |a + b| = |a| + |b|, and if @ and b have

opposite signs then |a + b| < |a| + |b].

1.3 STRAIGHT LINES

DEFINITION

Let P(x,, yo) be a point and let m be a real number. The line through P with
slope m is the set of all points Q(x, y) with

¥ = Yo = m(x — Xo).

This equation is called the point-slope equation of the line (See Figure 1.3.1.)

The vertical line through P is the set of all points Q(x, y) with x = x,. Vertical
lines do not have slopes.

}!
Q(x, »)
Y —=XYo
P(xo, yo)
/ X — X
7
/ 0 X
Figure 1.3.1

The slope is a measure of the direction of the line. Figure 1.3.2 shows lines
with zero, positive, and negative slopes.

The line that crosses the y-axis at the point (0, b) and has slope m has the
simple equation.

y=mx + b

— T

Slope =0 Slope >0 Slope <0 Vertical
Figure 1.3.2 no slope
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This is called the slope-intercept equation for the line. We can get it from the point-
slope equation by setting x, = 0 and y, = b.

EXAMPLE 1 The line through the point P(— 1, 2) with slope m = —3 (Figure 1.3.3)
has the point-slope equation
y=2=(c—(=1)-(—4, or y—2=—x+1)
The slope-intercept equation is

y=—3x+ 13

y

P(—m Fo

Figure 1.3.3

We now describe the functions whose graphs are nonvertical lines.

DEFINITION

A linear function is a function f of the form
fx)y=mx + b,
where m and b are constants.
The graph of a linear function is just the line with slope-intercept equation
y =mx + b.

This is the line through (0, b) with slope m.
If two points on a line are known, the slope can be found as follows.

THEOREM 1

Suppose a line L passes through two distinct points P(xi, y1) and Q(x,, y2).
If x; = x,, then the line L is vertical. If x| # x,, then the slope of the line L is
equal to the change in y divided by the change in x,

Ay oy =y

Ax X, — Xq

PROOF Suppose x; # X,, so L is not vertical. Let m be the slope of L. L has the
point-slope formula

y =y =mx— x).

Substituting y, for y and x, for x, we see that m = (y, — y)/(x; — x3).

Theorem 1 shows why the slope of a line is a measure of its direction. Some-
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times Ax is called the run and Ay the rise. Thus the slope is equal to the rise divided
by the run. A large positive slope means that the line is rising steeply to the right,
and a small positive slope means the line rises slowly to the right. A negative slope
means that the line goes downward to the right. These cases are illustrated in
Figure 1.3.4.

Q P
P Ay Ay
Ax Q
Ax
Large positive Small positive Negative
slope slope slope

Figure 1.3.4

There is exactly one line L passing through two distinct points P(xy, y,)
and Q(x,, y,). If x; # x,, we see from Theorem 1 that L has the equation

_ Y2 _
y=—yn= (——~x2 — xl)(x Xy)-

This is called the two-point equation for the line.

EXAMPLE 2 Given P(3, 1) and Q(1, 4), find the changes in x and y, the slope, and
the equation of the line through P and Q. (See Figure 1.3.5.)

Ax=1-3= -2, Ay=4—-1=13
The line through P and Q has slope Ay/Ax = —3, and its equation is
y= 1= —3x-3)

N
o(l, 4)

= —3(x—
y=l=-3x=3

P3, 1)
o \ X

EXAMPLE 3 Given P(1, —1) and Q(1, 2), as in Figure 1.3.6,
Ax=1-1=0, Ay=2—-(-1)=13.
The line through P and Q is the vertical line x = 1.

Figure 1.3.5
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¥y
I
®
(1, 2)
0O X
P, -1)
Figure 1.3.6

EXAMPLE 4 A particle moves along the y-axis with constant velocity. At time
t = Osec,itisat the pointy = 3 ft. Attime ¢ = 2 sec,itisatthe point y = 11ft.
Find the velocity and the equation for the motion.
The velocity is defined as the distance moved divided by the time elapsed, so
the velocity is
Ay 11 -3
V= — =
At 2-0

If the motion of the particle is plotted in the (¢, y) plane as in Figure 1.3.7,

= 4 ft/sec.

¥y
3
1
™
/
BN

Ay

At

the result is a line through the points P(0,3) and Q(2, 11). The velocity,
being the ratio of Ay to At, is just the slope of this line. The line has the

equation

Figure 1.3.7

y — 3 =4t

Suppose a particle moving with constant velocity is at the point y = y, at
time ¢ = t;, and at the point y = y, at time ¢ = ¢,. Then the velocity is v = Ay/At.
The motion of the particle plotted on the (¢, y) plane is the line passing through the
two points (,, y,) and (¢,, ¥,), and the velocity is the slope of this line.

An equation of the form

Ax + By + C =20
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where A and B are not both zero is called a linear equation. The reason for this name is
explained by the next theorem.

THEOREM 2
Every linear equation determines a line.

PROOF

Case 1 B = 0. The equation Ax + C = 0 can be solved for x, x = —C/A. Thisis a
vertical line.

Case 2 B # 0. In this case, we can solve the given equation for y, and the result is

—-Ax - C Ax C
= ) = —= — —_—
¥ B > Y B B

This is a line with slope — 4/B crossing the y-axis at —C/B.

EXAMPLE 5 Find the slope of the line 6x — 2y + 7 = 0.
The answer ism = —A/B = —6/(—2) = 3.

To draw the graph of a linear equation, find two points on the line and
draw the line through them with a ruler.

EXAMPLE 6 Draw the graph of the line 4x + 2y + 3 = 0.
First solve for y as a function of x:

y=—2x — 3.

Next select any two values for x, say x = 0 and x = 1, and compute the
corresponding values of y.

When x=0, y=—3
7
2

When x=1, y= -1

Finally, plot the two points (0, —3) and (1, —%), and draw the line through
them. (See Figure 1.3.8.)

©,-%)

(1,-3
Figure 1.3.8 dx +2y +3 =0
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1.4 SLOPE AND VELOCITY; THE HYPERREAL LINE

PROBLEMS FOR SECTION 1.3

In Problems 1-8, find the slope and equation of the line through P and Q.

1

3 U W

9
11
13

P(1,2), 0@3,4) 2 P(1, —3), 0(0, 2)
P(—4,1), 0(—4,2) 4 P25, 02,7
P(3,0), Q@01 6 PO,0), Q10,49
P(1,3, 033 8 P, —2), 0@, -2)
In Problems 9-16, find the equation of the line with slope m through the point P.
m=2, P33 10 m=3, P(-2,1)
m= -4  P(1,-4) 12 m=—1, P(2,4)
m=>5, P(0,0) 14 m= —2, P(0,0)
m=0, P(7,4) 16 vertical line, P4, 5)

15

In Problems 17-22, a particle moves with constant velocity and has the given positions y at the
given times t. Find the velocity and the equation of motion.

17
18
19
20
21
22
23

24

y=0att=0, y=2att=1
y=3att=0, y=1latt=2
y=4datt=1 y=2att=5
y=latt=2, y=3att=3
y=4datt =0, y=4att=1
y=latt=3 y= —2att=6

A particle moves with constant velocity 3, and at time t = 2 is at the point y = 8. Find
the equation for its motion.

A particle moves with constant velocity 4, and at time ¢t = 0 is at y = 1. Find the
equation for its motion.

In Problems 25-30, find the slope of the line with the given equation, and draw the line.

25
27
29
31

32
33

34

3x -2y+5=0 26 x+y—1=0
2x —y=0 28 6x +2y =0
3x+4y=6 30 —2x +4y = —1

Show that the line that crosses the x-axis at @ # 0 and the y-axis at b # 0 has the
equation (x/a) + (y/b) — 1 = 0.

What is the equation of the line through the origin with slope m?

Find the points at which the line ax + by + ¢ = 0 crosses the x- and y-axes. (Assume
thata # 0and b # 0.)

Let C denote Celsius temperature and F Fahrenheit temperature. Thus, C = 0 and

F = 32 at the freezing point of water, while C = 100 and F = 212 at the boiling point
of water. Use the two-point formula to find the linear equation relating C and F.

SLOPE AND VELOCITY; THE HYPERREAL LINE

In Section 1.3 the slope of the line through the points (x;, y,) and (x,, y,) is shown
to be the ratio of the change in y to the change in x,

dope = A _ V2=
PE= Ax X, — Xg

21
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If the line has the equation
y =mx + b,

then the constant m is the slope.

What is meant by the slope of a curve? The differential calculus is needed to
answer this question, as well as to provide a method of computing the value of the
slope. We shall do this in the next chapter. However, to provide motivation, we now
describe intuitively the method of finding the slope.

Consider the parabola

y = x2
The slope will measure the direction of a curve just as it measures the direction of a
line. The slope of this curve will be different at different points on the x-axis, because
the direction of the curve changes.

If (xq,10) and (x, + Ax,y, + Ay) are two points on the curve, then the
“average slope” of the curve between these two points is defined as the ratio of the
change in y to the change in x,

Ay
average slope = —.
Ax

This is exactly the same as the slope of the straight line through the points (x,, ;)
and (xo + Ax, v + Ay}, as shown in Figure [.4.1.

(xo+ Ax, yo+ Ay)
(x0, Yo) Ay

Ax

Figure 1.4.1

Let us compute the average slope. The two points (x,, yo) and (xy + Ax, vy + Ay)
are on the curve, so

Yo = ,\'é,
Yo + Ay = (x4 + Ax)%
Subtracting, Ay = (xo + Ax)? — x3.
. Ay (xo + AX)? — X}
Dividing by Ax, — = —
B by Ax Ax Ax

This can be simplified,
Ay X3 + 2xy Ax + (Ax)? — x2
Ax Ax
_ 2xp Ax + (Ax)?
B Ax

= 2xo + Ax.
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Thus the average slope is

Av
)‘ = 2xq + Ax.

Notice that this computation can only be carried out when Ax # 0, because at
Ax = 0 the quotient Ay/Ax is undefined.

Reasoning in a nonrigorous way, the actual slope of the curve at the point
(X0, yo) can be found thus. Let Ax be very small (but not zero). Then the point
(xo + Ax,yo + Ay)is close to (xq, yo), so the average slope between these two points
is close to the slope of the curve at (x,, yq);

[slope at (xg, yo)] is close to 2x, + Ax.
We neglect the term Ax because it is very small, and we are left with
[slope at (xg, yo)] = 2x,.

For example, at the point (0, 0) the slope is zero, at the point (1, 1) the slope is 2, and
at the point (—3,9) the slope is —6. (See Figure 1.4.2)

y
(=3,9
slope= —6
slope =2
an
0, 0)[™_ x
Figure 1.4.2 y=x2 slope =0

The whole process can also be visualized in another way. Let ¢ represent time,
and suppose a particle is moving along the y-axis according to the equation y = t2.
That is, at each time r the particle is at the point 2 on the y-axis. We then ask: what
is meant by the velocity of the particle at time ¢,? Again we have the difficulty that the
velocity is different at different times, and the calculus is needed to answer the question
in a satisfactory way. Let us consider what happens to the particle between a time ¢,
and a later time t, + At. The time elapsed is At, and the distance moved is Ay =
2to At + (At)*. If the velocity were constant during the entire interval of time, then it
would just be the ratio Ay/At. However, the velocity is changing during the time
interval. We shall call the ratio Ay/At of the distance moved to the time elapsed the
“average velocity” for the interval;

Ay

ave = A7 = 2ty + At

The average velocity is not the same as the velocity at time t, which we are after. As a
matter of fact, for ¢, > 0, the particle is speeding up; the velocity at time ¢, will be
somewhat less than the average velocity for the interval of time between t, and ¢, + At,
and the velocity at time z, + At will be somewhat greater than the average.

23
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But for a very small increment of time At, the velocity will change very little,
and the average velocity Ay/At will be close to the velocity at time t,. To get the
velocity v, at time t,, we neglect the small term At in the formula

Uave = 2[O + A[’
and we are left with the value
vo = 2t4.

When we plot y against ¢, the velocity is the same as the slope of the curve
y = t%, and the average velocity is the same as the average slope.

The trouble with the above intuitive argument, whether stated in terms of
slope or velocity, is that it is not clear when something is to be “neglected.” Neverthe-
less, the basic idea can be made into a useful and mathematically sound method of
finding the slope of a curve or the velocity. What is needed is a sharp distinction
between numbers which are small enough to be neglected and numbers which aren’t.
Actually, no real number except zero is small enough to be neglected. To get around
this difficulty, we take the bold step of introducing a new kind of number, which is
infinitely small and yet not equal to zero.

A number ¢ is said to be infinitely small, or infinitesimal, if

—a<e<a

for every positive real number a. Then the only real number that is infinitesimal is
zero. We shall use a new number system called the hyperreal numbers, which contains
all the real numbers and also has infinitesimals that are not zero. Just as the real
numbers can be constructed from the rational numbers, the hyperreal numbers can
be constructed from the real numbers. This construction is sketched in the Epilogue
at the end of the book. In this chapter, we shall simply list the properties of the
hyperreal numbers needed for the calculus.

First we shall give an intuitive picture of the hyperreal numbers and show
how they can be used to find the slope of a curve. The set of all hyperreal numbers is
denoted by R*. Every real number is a member of R¥*, but R* has other elements too.
The infinitesimals in R* are of three kinds: positive, negative, and the real number 0.
The symbols Ax, Ay, ... and the Greek letters ¢ (epsilon) and 6 (delta) will be used for
infinitesimals. If a and b are hyperreal numbers whose difference ¢ — b is infinitesimal,
we say that a is infinitely close to b. For example, if Ax is infinitesimal then x, + Ax is
infinitely close to x,. If ¢ is positive infinitesimal, then —¢ will be a negative infinitesi-
mal. 1/ will be an infinite positive number, that is, it will be greater than any real
number. On the other hand, —1/e will be an infinite negative number, i.e., a number
less than every real number. Hyperreal numbers which are not infinite numbers are
called finite numbers. Figure 1.4.3 shows a drawing of the hyperreal line. The circles
represent “infinitesimal microscopes” which are powerful enough to show an infinitely
small portion of the hyperreal line. The set R of real numbers is scattered among the
finite numbers. About each real number ¢ is a portion of the hyperreal line composed
of the numbers infinitely close to ¢ (shown under an infinitesimal microscope for
¢ = 0 and ¢ = 100). The numbers infinitely close to 0 are the infinitesimals.

In Figure 1.4.3 the finite and infinite parts of the hyperreal line were separated
from each other by a dotted line. Another way to represent the infinite parts of the
hyperreal line is with an “infinite telescope” as in Figure 1.4.4. The field of view of an
infinite telescope has the same scale as the finite portion of the hyperreal line, while
the fleld of view of an infinitesimal microscope contains an infinitely small portion
of the hyperreal line biown up.
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We have no way of knowing what a line in physical space is really like.
It might be like the hyperreal line, the real line, or neither. However, in applications
of the calculus it is helpful to imagine a line in physical space as a hyperreal line.
The hyperreal line is, like the real line, a useful mathematical model for a line in
physical space.

The hyperreal numbers can be algebraically manipulated just like the real
numbers. Let us try to use them to find slopes of curves. We begin with the parabola
y = x>

Consider a real point (xg, yo) on the curve y = x?. Let Ax be either a positive
or a negative infinitesimal (but not zero), and let Ay be the corresponding change in y.
Then the slope at (x4, yo) is defined in the following way:

Ay

[slope at (x4, yo)] = [the real number infinitely close to A_}
X

Ay Ay  (xo + Ax)* — x2
—_— f B _———— = .
We compute Ax as before Ax Ax 2x, + Ax

This is a hyperreal number, not a real number. Since Ax is infinitesimal, the hyperreal
number 2x, + Ax is infinitely close to the real number 2x,. We conclude that

[slope at (xq, yo)] = 2x,.
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y y
X
= 52
y==x (x0, ¥0)
— 53
X y=x
Figure 1.4.5 Figure 1.4.6
Y
{(xotAx, yot4y)
(x0, ¥o)
Figure 1.4.7

The process can be illustrated by the picture in Figure 1.4.5, with the infinitesimal
changes Ax and Ay shown under a microscope.

The same method can be applied to other curves. The third degree curve
y = x% is shown in Figure 1.4.6. Let (x,, v,) be any point on the curve y = x3, and
let Ax be a positive or a negative infinitesimal. Let Ay be the corresponding change in
y along the curve. In Figure 1.4.7, Ax and Ay are shown under a microscope. We again

define the slope at (xq, yo) by

. A
[slope at (xq, yo)] = [the real number infinitely close to A_y}
X

A
We now compute the hyperreal number ry
X

Yo = X3,
Yo + Ay = (xo + Ax)?
Ay = (xp + AX)® — X3,
)

s

Ay (xo + Ax)® — x3
Ax Ax
Xy 3xF Ax + 3x0(Ax)? + (Ax)? — x3
B Ax
3x2 Ax + 3x4(Ax)? + (Ax)?
- Ax

1+
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Ay
and finally A—i = 3x3 + 3x, Ax + (Ax)%

In the next section we shall develop some rules about infinitesimals which
will enable us to show that since Ax is infinitesimal,

3xg Ax + (Ax)?
is infinitesimal as well. Therefore the hyperreal number
3x2 4+ 3x, Ax + (Ax)?
is infinitely close to the real number 3x3, whence
[slope at (xq, yo)] = 3x3.

For example, at (0, 0) the slope is zero, at (1, 1) the slope is 3, and at (2, 8) the
slope is 12.

We shall return to the study of the slope of a curve in Chapter 2 after we have
learned more about hyperreal numbers. From the last example it is evident that we
need to know how to show that two numbers are infinitely close to each other. This is
our next topic.

INFINITESIMAL, FINITE, AND INFINITE NUMBERS

Let us summarize our intuitive description of the hyperreal numbers from Section 1.4.
The real line is a subset of the hyperreal line; that is, each real number belongs to
the set of hyperreal numbers. Surrounding each real number r, we introduce a
collection of hyperreal numbers infinitely close to ». The hyperreal numbers infinitely
close to zero are called infinitesimals. The reciprocals of nonzero infinitesimals are
infinite hyperreal numbers. The collection of all hyperreal numbers satisfies the
same algebraic laws as the real numbers. In this section we describe the hyperreal
numbers more precisely and develop a facility for computation with them.

This entire calculus course is developed from three basic principles relating
the real and hyperreal numbers: the Extension Principle, the Transfer Principle,
and the Standard Part Principle. The first two principles are presented in this section,
and the third principle is in the next section.

We begin with the Extension Principle, which gives us new numbers called
hyperreal numbers and extends all real functions to these numbers. The Extension
Principle will deal with hyperreal functions as well as real functions. Our discussion
of real functions in Section 1.2 can readily be carried over to hyperreal functions.
Recall that for each real number q, a real function f of one variable either associates
another real number b = f(a) or is undefined. Now, for each hyperreal number
H, a hyperreal function F of one variable either associates another hyperreal number
K = F(H) or is undefined. For each pair of hyperreal numbers H and J, a hyperreal
function G of two variables either associates another hyperreal number K = G(H, J)
or is undefined. Hyperreal functions of three or more variables are defined in a

similar way.

I. THE EXTENSION PRINCIPLE

(a) The real numbers form a subset of the hyperreal numbers, and the order
relation x < y for the real numbers is a subset of the order relation for
the hyperreal numbers.
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(b) There is a hyperreal number that is greater than zero but less than every
positive real number.

(c) For every real function f of one or more variables we are given a corre-
sponding hyperreal function f* of the same number of variables. f* is
called the natural extension of f.

Part (a) of the Extension Principle says that the real line is a part of the
hyperreal line. To explain part (b) of the Extension Principle, we give a careful
definition of an infinitesimal.

DEFINITION

A hyperreal number b is said to be:
positive infinitesimal if b is positive but less than every positive real number.

negative infinitesimal if b is negative but greater than every negative real
number.

infinitesimal if b is either positive infinitesimal, negative infinitesimal, or zero.

With this definition, part (b) of the Extension Principle says that there is at
least one positive infinitesimal. We shall see later that there are infinitely many
positive infinitesimals. A positive infinitesimal is a hyperreal number but cannot be
a real number, so part (b) ensures that there are hyperreal numbers that are not
real numbers.

Part (c) of the Extension Principle allows us to apply real functions to
hyperreal numbers. Since the addition function + is a real function of two variables,
its natural extension +* is a hyperreal function of two variables. If x and y are
hyperreal numbers, the sum of x and y is the number x +* y formed by using the
natural extension of +. Similarly, the product of x and y is the number x «* y formed
by using the natural extension of the product function «. To make things easier
to read, we shall drop the asterisks and write simply x + y and x« y for the sum
and product of two hyperreal numbers x and y. Using the natural extensions of
the sum and product functions, we will be able to develop algebra for hyperreal
numbers. Part (¢) of the Extension Principle also allows us to work with expressions
such as cos (x) or sin (x + cos (y)), which involve one or more real functions, We
call such expressions real expressions. These expressions can be used even when
x and y are hyperreal numbers instead of real numbers. For example, when x and y
are hyperreal, sin (x + cos (y)) will mean sin* (x + cos* (y)), where sin* and cos*
are the natural extensions of sin and cos. The asterisks are dropped as before.

We now state the Transfer Principle, which allows us to carry out compu-
tations with the hyperreal numbers in the same way as we do for real numbers.
Intuitively, the Transfer Principle says that the natural extension of each real function
has the same properties as the original function.

II. TRANSFER PRINCIPLE

Every real statement that holds for one or more particular real functions holds
Jor the hyperreal natural extensions of these functions.

Here are seven examples that illustrate what we mean by a real statement.
In general, by a real statement we mean a combination of equations or inequalities
about real expressions, and statements specifying whether a real expression is defined
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or undefined. A real statement will involve real variables and particular real functions.

(1) Closure law for addition: for any x and y, the sum x + y is defined.

(2) Commutative law for addition: x + y = y + x.

(3) Arulefororder:If0 < x < y,then 0 < 1/y < 1/x.

(4) Division by zero is never allowed: x/0 is undefined.

(5) An algebraic identity: (x — y)? = x2 — 2xy + y2

(6) A trigonometric identity: sin® x + cos? x = 1.

(7) A rule for logarithms: If x > 0 and y > 0, then log,q (xy) = log;q x
+ logyo y.

Each example has two variables, x and y, and holds true whenever x and y are real
numbers. The Transfer Principle tells us that each example also holds whenever x
and y are hyperreal numbers. For instance, by Example (4), x/0 is undefined, even
for hyperreal x. By Example (6), sin? x + cos? x = 1, even for hyperreal x.

Notice that the first five examples involve only the sum, difference, product,
and quotient functions. However, the last two examples are real statements involving
the transcendental functions sin, cos, and log,,. The Transfer Principle extends all
the familiar rules of trigonometry, exponents, and logarithms to the hyperreal
numbers.

In calculus we frequently make a computation involving one or more
unknown real numbers. The Transfer Principle allows us to compute in exactly
the same way with hyperreal numbers. It “transfers” facts about the real numbers
to facts about the hyperreal numbers. In particular, the Transfer Principle implies
that a real function and its natural extension always give the same value when applied
to a real number. This is why we are usually able to drop the asterisks when computing
with hyperreal numbers.

A real statement is often used to define a new real function from old real
functions. By the Transfer Principle, whenever a real statement defines a real function,
the same real statement also defines the hyperreal natural extension function. Here
are three more examples.

(8) The square root function is defined by the real statement y = \/E if,
and only if, y* = x and y > 0.
(9) The absolute value function is defined by the real statement y = |x|
if, and only if, y = /7.
(10) The common logarithm function is defined by the real statement

y = log,¢ x if, and only if, 10* = x.

In each case, the hyperreal natural extension is the function defined by the given
real statement when x and y vary over the hyperreal numbers. For example, the
hyperreal natural extension of the square root function, f * isdefined by Example (8)
when x and y are hyperreal.

An important use of the Transfer Principle is to carry out computations
with infinitesimals. For example, a computation with infinitesimals was used in the
slope calculation in Section 1.4. The Extension Principle tells us that there is at
least one positive infinitesimal hyperreal number, say &. Starting from &, we can use
the Transfer Principle to construct infinitely many other positive infinitesimals. For
example, &% is a positive infinitesimal that is smaller than e, 0 < &> < &. (This
follows from the Transfer Principle because 0 < x?> < x for all real x between 0
and 1.) Here are several positive infinitesimals, listed in increasing order:

2, €2, ¢/100, &, 75¢, \/E, £+ \/g
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We can also construct negative infinitesimals, such as —e and —¢2, and other hyper-
real numbers such as 1 + \/;, (10 — &)?, and 1/e.

We shall now give a list of rules for deciding whether a given hyperreal
number is infinitesimal, finite, or infinite. All these rules follow from the Transfer
Principle alone. First, look at Figure 1.5.1, illustrating the hyperreal line.

Infinitesimal

~3-2-1 0 1 2 3

Negative Finite Positive
infinite infinite
Figure 1.5.1
DEFINITION

A hyperreal number b is said to be:

Sfinite if b is between two real numbers.
positive infinite if b is greater than every real number.
negative infinite if b is less than every real number.

Notice that each infinitesimal number is finite. Before going through the
whole list of rules, let us take a close look at two of them.

If ¢ is infinitesimal and a is finite, then the product a « ¢ is infinitesimal. For
example, 3¢, — 6¢, 1000¢, (5 — ¢)e are infinitesimal. This can be seen intuitively from
Figure 1.5.2; an infinitely thin rectangle of length a has infinitesimal area.

If & is positive infinitesimal, then 1/e is positive infinite. From experience we
know that reciprocals of small numbers are large, so we intuitively expect 1/e to
be positive infinite. We can use the Transfer Principle to prove 1/e is positive infinite.
Let r be any positive real number. Since ¢ is positive infinitesimal, 0 < & < 1/r.
Applying the Transfer Principle, 1/¢ > # > 0. Therefore, 1/¢ is positive infinite.

e C— — Area=aq-¢€

Figure 1.5.2

RULES FOR INFINITESIMAL, FINITE, AND INFINITE NUMBERS Assume that £, 0
are infinitesimals; b, ¢ are hyperreal numbers that are finite but not infinitesimal;
and H, K are infinite hyperreal numbers.

(i)  Real numbers:
The only infinitesimal real number is 0.
Every real number is finite.

(ii) Negatives :
—¢& is infinitesimal,



(iii)

(iv)

™)

(vi)

(vii)
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— b is finite but not infinitesimal.

— H is infinite.

Reciprocals:

If e # 0, 1/¢ is infinite.

1/b is finite but not infinitesimal.

1/H is infinitesimal.

Sums :

¢ + 0 is infinitesimal.

b + ¢ is finite but not infinitesimal.

b + c is finite (possibly infinitesimal).
H + g and H + b are infinite.
Products:

&+ & and b « ¢ are infinitesimal.

b » ¢ is finite but not infinitesimal.

H « b and H « K are infinite.
Quotients :

g/b, e/H, and b/ H are infinitesimal.
b/c is finite but not infinitesimal.

ble, Hle, and H[b are infinite, provided that ¢ # 0.
Roots:

Ife > 0, \’72 is infinitesimal.

Ifb > 0, \"ﬁ is finite but not infinitesimal.
IfH > 0, \'/T{is infinite.

Notice that we have given no rule for the following combinations:

&/8, the quotient of two infinitesimals.

H/K, the quotient of two infinite numbers.

He, the product of an infinite number and an infinitesimal.
H + K, the sum of two infinite numbers.

Each of these can be either infinitesimal, finite but not infinitesimal, or infinite,
depending on what ¢, , H, and K are. For this reason, they are called indeterminate

forms.

Here are three very different quotients of infinitesimals.

2

e . L ..
— is infinitesimal (equal to &).
;

g . . P
— is finite but not infinitesimal (equal to 1).
£

£ . . )
— is infinite
£

Table 1.5.1 on the following page shows the three possibilities for each indeterminate

eualto1
q 2l

form. Here are some examples which show how to use our rules.

EXAMPLE 1

Consider (b — 3g)/(c + 26). ¢ is infinitesimal, so — 3¢ is infinitesimal,
and b — 3¢ is finite but not infinitesimal. Similarly, ¢ + 26 is finite but not

infinitesimal. Therefore the quotient

b — 3¢
¢+ 26

is finite but not infinitesimal.
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Table 1.5.1
Examples
indeterminate finite '
form infinitesimal (equal to 1) infinite
g g2 3 &
) e g g?
H H H iz
K H? H H
1 1 |
He H. G H 'ﬁ H?.—
H+K H+(—H) (H+ )+ (-H) H+H

The next three examples are quotients of infinitesimals.

EXAMPLE 2 The quotient

1

Se* — 83 + ¢?

3e
is infinitesimal, provided & # 0.
The given number is equal to
36° — 8e? + Le

We see in turn that g, %, £3,4¢, —$e?, 3¢* are infinitesimal; hence the sum (1)
is infinitesimal.

EXAMPLE 3 Ife # 0, the quotient

@)

3¢+ g% — 6
2et+ ¢
is finite but not infinitesimal.
Cancelling an ¢ from numerator and denominator, we get
P +e—6
26+ 1

Since 3¢? + ¢ is infinitesimal while —6 is finite but not infinitesimal, the
numerator

3t +e—6

is finite but not infinitesimal. Similarly, the denominator 2¢ + 1, and hence
the quotient (2) is finite but not infinitesimal.

EXAMPLE 4 Ife # 0, the quotient

g*— g3+ 2

5¢* + ¢?

2

is infinite.
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We first note that the denominator 5¢* + &* is not zero because it can be
written as a product of nonzero factors,
Se* g2 =gegege(5e + 1)
When we cancel &2 from the numerator and denominator we get
g2 —¢ +2
5¢* + ¢
We see in turn that:

£* — ¢ + 2 is finite but not infinitesimal,
5¢% + ¢ is infinitesimal,
e —e+2. . .
— 5 is infinite.
S5e* + ¢

EXAMPLE 5 2H” + H is finite but not infinitesimal
H*-H+ 2 '
In this example the trick is to multiply both numerator and denominator by
1/H? We get
2+ 1/H
1 —1/H + 2/H*
Now 1/H and 1/H? are infinitesimal. Therefore both the numerator and
denominator are finite but not infinitesimal, and so is the quotient.

In the next theorem we list facts about the ordering of the hyperreals.

THEOREM 1

(i) Every hyperreal number which is between two infinitesimals is infinitesi-

mal.

(ii) Every hyperreal number which is between two finite hyperreal numbers is
finite.

(iii) Every hyperreal number which is greater than some positive infinite
number is positive infinite.

(iv)  Every hyperreal number which is less than some negative infinite number
is negative infinite.

All the proofs are easy. We prove (iii), which is especially useful. Assume H is

positive infinite and H < K. Then for any real number r, r < H < K.
Therefore, r < K and K is positive infinite.

EXAMPLE 6 If H and K are positive infinite hyperreal numbers, then H + K is
positive infinite. This is true because H + K is greater than H.

Our last example concerns square roots.
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EXAMPLE 7 [If H is positive infinite then, surprisingly,

VH+1I - /H -1

is infinitesimal.
This is shown using an algebraic trick.

e (JH+ 1= JH-O)JH+ 1+ /H-1)
JH+ 1 - JH - 1= -
JH+ 1+ /H -1
H+D—(H-1 _ 2

JH+l+JH-1 JH+1+ JHZ1

The numbers H + 1, H — 1, and their square roots are positive infinite, and
thus the sum \/H + 1+ \/H — 1 is positive infinite. Therefore the quotient

JEV 1= JH- 1= 2

JH+1+ JH -1

a finite number divided by an infinite number, is infinitesimal.

PROBLEMS FOR SECTION 1.5

In Problems 1-40, assume that: &, ¢ are positive infinitesimal, H, K are positive infinite.
Determine whether the given expression is infinitesimal, finite but not infinitesimal, or infinite.

0 i W=

13

15

17

19

21

23

25

27

76,000,000¢ 2 3e + 46
1+ 1/ 4 33 -2+ +1
11/e 6 ¢/ H
H/1,000,000 8 B3+*-9
I + &+ 3¢
3 4+ 68)— 12 0 L
G+ o +0) ! 2— 68
2% — ¢t 283 — gt
Ar _ o201 o3 12 Apd | o4
de — e+ ¢ 4e° + ¢
3e — 4¢? ;-
j 83 14 \/;I—S
e* + Se \/E+1
I 1 -~
16 N
\/E~5 g
1
~+5¢ 18 1'83
& £
If 1 1 2H + 1
Et+a’§) 2 3H +2
2H* +3H -6 ” H+4+¢
4H3 + 5 H?+ 2
H+ K 24 H-K
HK H* + K?

H* - H 26 VHA+1

12 12 82 82
H+-| —|H- = 8 Nl
<3 [ W [ - [a )

H
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Jh+e—2 30 1(1_ 1 )

1 JH
H| [34+—-—-./3 32 . i
( H ‘[) JH+1+4 JH+2

H(/H + 2 - J/H) 34 1=yite 381”
JH - YH + 1 36 H-J/H+1/H+2

B+g@d+06)—12 18 5+e_§
&0 T7+6 17
e+ 6 H4+ K

9 40 T
JE+ 8 JH? + K?
(Hint: Assume ¢ > 0

and divide through by ¢.)

In (a)Hf) below, determine which of the two numbers is greater.
1 1
(@ & or & (b) 3 o 3 © H or H?

d ¢ or Je € H or JH (f)\/—ﬁorﬁ

. X Y, .a. ..
Let x, y be positive hyperreal numbers. Can ; + 4 be infinite? Finite? Infinitesimal?
X

Let a and b be real. When is (3¢ — ¢ + a)/(4e® + 2e + b)

(a) infinitesimal?

(b) finite but not infinitesimal?

(c) infinite?

Let a and b be real. When is (aH? — 2H + 5)/(bH* + H — 2)
(a) infinitesimal?

(b) finite but not infinitesimal?

(c) infinite?

STANDARD PARTS

In this section we shall develop a method that will enable us to compute the slope
of a curve by means of infinitesimals. We shall use the method to find slopes of
curves in Chapter 2 and to find areas in Chapter 4. The key step will be to find the
standard part of a given hyperreal number, that is, the real number that is infinitely

close to it.

DEFINITION

Two hyperreal numbers b and ¢ are said to be infinitely close to each other, in
symbols b = c, if their difference b — c is infinitesimal. b % ¢ means that b is
not infinitely close to c.

Here are three simple remarks.

(1)  If & is infinitesimal, then b =~ b + e. This is.true because the difference,
b — (b + &) = —¢, is infinitesimal.

35
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(2)  bis infinitesimal if and only if b ~ 0. The formula b ~ 0 will be used as a
short way of writing “b is infinitesimal. ”

(3) Ifb and c are real and b is infinitely close to c, then b equals c.
b — ¢ is real and infinitesimal, hence zero; so b = c.

The relation &~ between hyperreal numbers behaves somewhat like equality,
but, of course, is not the same as equality. Here are three basic properties of .

THEOREM 1

Let a, b and ¢ be hyperreal numbers.

i)y a=xa.
(i) Ifa=b,thenb = a.
(i) Ifaxbandb ~c, thena = c

These properties are useful when we wish to show that two numbers are
infinitely close to each other.

The reason for (i) is that @ — a is an infinitesimal, namely zero. For (ii), we
note that if a — b is an infinitesimal &, then b-— a = —¢, which is also infinitesimal.
Finally, (iii) is true because a — ¢ is the sum of two infinitesimals, namely a — b and
b—ec

THEOREM 2

Assume a =~ b. Then

(i) Ifais infinitesimal, so is b.
(i) Ifais finite, sois b.
(iii) Ifa is infinite, so is b.

The real numbers are sometimes called “standard” numbers, while the
hyperreal numbers that are not real are called “nonstandard” numbers. For this
reason, the real number that is infinitely close to b is called the “standard part” of b.
An infinite number cannot have a standard part, because it can’t be infinitely close
to a finite number (Theorem 2). Our third principle (stated next) on hyperreal
numbers is that every finite number has a standard part.

Il. STANDARD PART PRINCIPLE

Every finite hyperreal number is infinitely close to exactly one real number.

DEFINITION

Let b be a finite hyperreal number. The standard part of b, denoted by st(b), is
the real number which is infinitely close to b. Infinite hyperreal numbers do
not have standard parts.
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Here are some facts that follow at once from the definition.
Let b be a finite hyperreal number.

(1) st(b) is a real number.
(2} b = st(b) + ¢ for some infinitesimal e.
(3) Ifbisreal then b = st(b).

Our next aim is to develop some skill in computing standard parts. This will
be one of the basic methods throughout the Calculus course. The next theorem is the
principal tool.

THEOREM 3

Let a and b be finite hyperreal numbers. Then

(1) st{(—a) = —st(a).

(i1} stla + b) = st{a) + st(b).

(iif) stla — b) = st{a) — st(b).

(iv) st(ab) = st(a) - st(b).

(v) Ifst(b) # O, then st(a/b) = st(a)/st(b).

(vi) st(@") = (st(a))".

(vii) Ifa = 0, then st({/a) = Jst(a).
(viii} Ifa < b, then st{a) < st(b).
This theorem gives formulas for the standard parts of the simplest expressions.
All of the rules in Theorem 3 follow from our three principles for hyperreal

numbers. As an illustration, let us prove the formula (iv) for st(ab). Let r be the
standard part of a and s the standard part of b, so that

a=r+s, b=s+36,
where ¢ and ¢ are infinitesimal. Then
ab = (r+ &)(s + 9)
=rs+ 10+ se+ &d ~rs.
Therefore st{ab) = rs = st(a) » st(b).

Often the symbols Ax, Ay, etc. are used for infinitesimals. In the following
examples we use the rules in Theorem 3 as a starting point for computing standard
parts of more complicated expressions.

EXAMPLE 1  When Ax is an infinitesimal and x is real, compute the standard part of
3x? 4+ 3x Ax + (Ax)>
Using the rules in Theorem 3, we can write
st(3x% 4 3x Ax + (Ax)?) = st(3x2) + st(3x Ax) + st((Ax)?)
= 3x2 + st(3x) - st(Ax) + st(Ax)?
=3x? + 3x.0 + 0% = 3x2
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EXAMPLE 2 Ifst(c) =4 and ¢ # 4, find

c? + 2c— 24
c* — 16

We note that the denominator has standard part 0,
st(c? — 16) = st(c)? — 16 = 4* — 16 = 0.
However, since ¢ # 4 the fraction is defined, and it can be simplified by
factoring the numerator and denominator,
¢+ 2c—24 (c+6)c—4) c+6
2 —16  (c+Dec—-4 c+4
¢t 4+ 2c — 24
2 — 16

c+ 6  stlc+6)
c+ 4] stc+4)
se)+6 _4+6 10

stc) +4 4+4 8

Then st

We now have three kinds of computation available to us. First, there are
computations involving hyperreal numbers. In Example 2, the two steps giving
¢ +20-24 c+6
¢?—16 c+4

are computations of this kind. The computations of this first kind are justified by the
Transfer Principle.

Second, we have computations which involve standard parts. In Example 2,
the three steps giving

> +20—24 stc)+6
¢ —16  st(c)+ 4

are of this kind. This second kind of computation depends on Theorem 3.
Third there are computations with ordinary real numbers. Sometimes the
real numbers will appear as standard parts. In Example 2, the last two steps which give
stley + 6 10

stic) +4 8
are computations with ordinary real numbers.

Usually, in computing the standard part of a hyperreal number, we use the
first kind of computation, then the second kind, and then the third kind, in that order.
We shall give two more somewhat different examples and pick out these three stages
in the computations.

EXAMPLE 3 If H is a positive infinite hyperreal number, compute the standard part
of
c:2H3+5H2—3H
TH? — 2H? + 4H'
In this example both the numerator and denominator are infinite, and we

have to use the first type of computation to get the equation into a different
form before we can take standard parts.




1.6 STANDARD PARTS 39

First stage

2H3+5H2—3H' _H*-(QH>+SH> —3H) 2+ 5H ' —3H?
TH® —2H* +4H H 3.(TH® —2H? {4H) 7 —-2H ' + 4H %

c =

Second stage  H~'and H™? are infinitesimal, so

24 S5SH '=3H* st2+S5H ' —3H?%
7—2H '+ 4H %) st(7T—2H ' +4H7?)
st +sSH™ ) —stBH™?) 2+0-0

st — st2H Y+ stdH™Y) T 7-0+0
240-0 2

7-04+0" 7

st(c) = st

Third stage st(c) =

EXAMPLE 4 If ¢ is infinitesimal but not zero, find the standard part of
&
T s5-/B5te
Both the numerator and denominator are nonzero infinitesimals.
First stage We multiply both numerator and denominator by 5 + \/ﬁ
& _ &5 + \/55—4-/8)
~J25+e (5-JV25+ a5+ /25 +¢)
_e5+/25+¢) s(5+J25-+§)

T 25— (254 %)
=—-5—-./25+e
Second stage st(b) = st(—5 — /25 + &) = st(—5) — st{ /25 + &)
= =5 /st25 + &y = —5 — /25

Third stage sthy= —5 — \/’E = —10.

EXAMPLE 5 Remember that infinite hyperreal numbers do not have standard parts.
Consider the infinite hyperreal number

3+¢
4e + &%’

where ¢ is a nonzero infinitesimal. The numerator and denominator have
standard parts

st3+¢ =3, stde + &%) =0.

However, the quotient has no standard part. In other words,

3 )
st( + 82) is undefined.
4 + ¢

PROBLEMS FOR SECTION 1.6

Compute the standard parts of the following.
1 2 + & + 32, ¢ infinitesimal
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b+ 2e — &2,

23

5+ 46’

vE 4+ 29T Ay + Ay,
(x* 4+ 3x Ax + Ax?)®,

VX A+ Ax + /x — Ax,
e*— g% + de
32+ 2 — 3
et _ g 4 g2
2¢? ’
4t — 3e3 4+ 262
3e* — 2¢% + g2
R+e+ )3 — ¢d),

Ja+ eja+ o,

2H + 4

3H-6

6H — 7

H*+ 2’

3H* — SH + 2
H*+1

H+1+¢

2H — 1 + 3¢’

H* 4 30 +1

4H* + 2H? - 1’

268 4 c 41

32+ 6b+ 1

bR+ be+ b -,

(x+ ey +e—xy

£

(x + Ax)? - x?
Ax ’
(x + Ax)® — x3
Ax ’

fla+¢e)— 1a
—

b2 — 25
b—5"
4 —q

2 - Ja
3—Je+2

c—17 °
3 - c+§
c—17 '
a’ —Sa+ 6

a—3

st(b) = 5, ¢ infinitesimal
¢ infinitesimal

yreal, Ay infinitesimal
x real, Ax infinitesimal

X positive real, Ax infinitesimal

¢ infinitesimal
¢ # 0 infinitesimal

¢ # 0 infinitesimal

¢, 6 Infinitesimal

stla) = 3, ¢, infinitesimal

H infinite
H infinite
H infinite
H infinite, ¢ inﬁnitesimal
H infinite

stb) =2, stle) = —1
sth) = 3, st(e) =2

x, yreal, & # 0 infinitesimal
x real, Ax # 0 infinitesimal
xreal, Ax # 0 infinitesimal

a # Oreal, & # 0infinitesimal
b#£5 and stb)=5

a#4 and stla) =4

c#7 and stc)=7

st(c) = 5

a#3 and sta) =3
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20— b -6

28 b2 35 7 2 b#2 and si(b)=2

29 ;:451—2:2’ c# —3 and stc)= -3

30 ——\/25_:'5 , &40 and ¢ infinitesimal

31 £(~1—~ — 1) s e# 0 and ¢ infinitesimal
g \/m 2

32 2H ( 1+ Hl~ — ) R H positive infinite

13 JH+1
V2H+ JH-1
34 JH>* +H+1—H, H positive infinite

In the following problems let a, b, a, , b, be hyperreal numbers with a ~ a,b=xb,.

H positive infinite

35 Show thata + b =~ a; + b,.

Hint: Puta, = a + &b, = b + 3, and compute the difference (a, + b,) — (a + b).
36 Show that if 4, b are finite, then ab =~ a,b,.
37 Show thatifa = b = H,a, = b, = H + 1/H, then ab % a,b,. (H positive infinite).

EXTRA PROBLEMS FOR CHAPTER 1

1 Find the distance between the points P(2, 7) and Q(1, —4).

Find the slope of the line through the points P(2, —6) and Q(3, 4).

Find the slope of the line through P(3, 5) and Q(6, 0).

Find the equation of the line through P(4, 4) and Q(5, 9).

Find the equation of the line through P(4, 5) with slope m = —2.

Find the velocity and equation of motion of a particle which moves with constant
velocity and has positions y =2att =0,y = 5att = 2.

7 Find the equation of the circle with radius \[5 and center at (1, 3).

8 Find the equation of the circle that has center (1, 0) and passes through the point (0, 1).

SR W N

Let ¢ be positive infinitesimal. Determine whether the following are infinitesimal, finite but not
infinitesimal, or infinite.
9 (4 + 5)(2¢ + 6) 10 (4e + 5)(e* — &)

11 1/e — 2/¢* 12 1—J1—¢

Let H be positive infinite. Determine whether the following are infinitesimal, finite but not
infinitesimal, or infinite.

H-2
1 — 14 -~
3 (H—-2)(2H +5) SH T3
H+6 5
15 H_ 2 16 H°+1-H

Compute the standard parts in Problems 17-22.
17 (b + 2)(3b — 4¢), st(b) = 4, ¢ infinitesimal

18 2+ & + 3¢, ¢infinitesimal
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74—4—35%, ¢ infinitesimal
— JE

P8 WA 0% Ax infinitesimal
3 3+ Axjl\Ax

GH + (5K + 6
(H+ D{1 —4K)~

(\/H*+ 4 — H)H, H positive infinite
If £(x) = 1/3/x, find f(x + Ax) — [(x).

H, K positive infinite

! 9
x(x + Dix +2)
Show that if a < b, then (a + b)/2 is between a and b; that is, a < (a + b)/2 < b.

What is the domain of the function f(x) =

Show that every open interval has infinitely many points.

The union of two sets X and Y, X U Y, is the set of all x such that x is either in X or
Y or both. Prove that the union of two bounded sets is bounded.

The intersection of X and Y. X n ¥, is the set of all x such that x is in both X and Y.
Prove that the intersection of two closed intervals is either empty or is a closed interval.

Prove that the intersection of two open intervals is either empty or is an open interval,
Prove that two (real) straight lines with different slopes intersect.

Prove that if H is infinite, then 1/H is infinitesimal. ‘

Prove that if H is infinite and b is finite, then H + b is infinite.

Prove that if ¢ is positive infinitesimal, so is \'ﬁ

Prove that if @, b are not infinitesimal and a = b, then 1/a = 1/b.

Prove that if ¢ is finite, then st(|a|) = [st(a)|.

Suppose « is finite, » is real, and st(a) < r. Prove that a < r.

Suppose a and b are finite hyperreal numbers with st(a) < st(b). Prove that there is a
real number r with a < r < b.

Suppose that f is a real function.

Show that the set of real solutions of the equation f(x) = 0 is bounded if and only if
every hyperreal solution of f*(x) = 0 is finite.



2.1

DIFFERENTIATION

DERIVATIVES

We are now ready to explain what is meant by the slope of a curve or the velocity of
a moving point. Consider a real function f and a real number a in the domain of f.
When x has value g, f(x) has value f(a). Now suppose the value of x is changed
from a to a hyperreal number a + Ax which is infinitely close to but not equal to a.
Then the new value of f(x) will be f(a + Ax). In this process the value of x will be
changed by a nonzero infinitesimal amount Ax, while the value of f(x) will be changed
by the amount

fla + Ax) — fla).

The ratio of the change in the value of f(x) to the change in the value of x is

fla + Ax) — f(a)
Ax )

This ratio is used in the definition of the slope of f which we now give.

DEFINITION

S is said to be the slope of f at a if

fla + Ax) — f(a)
= §t
Ax

S

for every nonzero infinitesimal Ax.

The slope, when it exists, is infinitely close to the ratio of the change in f(x)
to an infinitely small change in x. Given a curve y = f(x), the slope of f at a is also
called the slope of the curve y = f(x)at x = a. Figure 2.1.1 shows a nonzero infinitesi-

43
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mal Ax and a hyperreal straight line through the two points on the curve at ¢ and
a + Ax. The quantity

fla + Ax) — fla)
Ax

is the slope of this line, and its standard part is the slope of the curve.

Figure 2.1.1

fla+ Ax) - fl@)

The slope of f at a does not always exist. Here is a list of all the possibilities.

(1) The slope of f at a exists if the ratio

(2)

fla + Ax) = f(a)
Ax

is finite and has the same standard part for all infinitesimal Ax # 0. It
has the value

fla + Ax) — [fla)
= st .

S Ax

The slope of f at a can fail to exist in any of four ways:

(a)
(b)

(©)

)

f(a) is undefined.
f(a + Ax) is undefined for some infinitesimal Ax # 0.

fla+ Ax) - f(@

The term Ax is infinite for some infinitesimal
Ax #0.

Ax) — .
The term M has different standard parts for

Ax
different infinitesimals Ax # 0.

We can consider the slope of fat any point x, which gives us a new function

of x.
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DEFINITION

Let f be a real function of one variable. The derivative of | is the new function
f' whose value at x is the slope of f at x. In symbols,

flx + Ax) — f(x)

J'(x) = st Ax

whenever the slope exists.

The derivative f’(x) is undefined if the slope of f does not exist at x.

For a given point a, the slope of f at a and the derivative of f at a are the
same thing. We usually use the word “slope” to emphasize the geometric picture and
“derivative” to emphasize the fact that f* is a function.

The process of finding the derivative of f is called differentiation. We say that
f is differentiable at a if f'(a) is defined; i.e., the slope of f at a exists.

Independent and dependent variables are useful in the study of derivatives.
Let us briefly review what they are. A system of formulas is a finite set of equations and
inequalities. If we are given a system of formulas which has the same graph as a simple
equation y = f(x), we say that y is a function of x, or that y depends on x, and we call
x the independent variable and y the dependent variable.

When y = f(x), we introduce a new independent variable Ax and a new
dependent variable Ay, with the equation

o Ay = f(x + Ax) — f(x).

This equation determines Ay as a real function of the two variables x and Ax, when
x and Ax vary over the real numbers. We shall usually want to use the Equation 1
for Ay when x is a real number and Ax is a nonzero infinitesimal. The Transfer
Principle implies that Equation 1 also determines Ay as a hyperreal function of two
variables when x and Ax are allowed to vary over the hyperreal numbers.

Ay is called the increment of y. Geometrically, the increment Ay is the change
in y along the curve corresponding to the change Ax in x. The symbol )’ is sometimes
used for the derivative, y' = f’(x). Thus the hyperreal equation

e = St(f(x ZLE f(X))
now takes the short form
Ay
V= St(Ax)

The infinitesimal Ax may be either positive or negative, but not zero. The
various possibilities are illustrated in Figure 2.1.2 using an infinitesimal microscope.
The signs of Ax and Ay are indicated in the captions.

Our rules for standard parts can be used in many cases to find the derivative
of a function. There are two parts to the problem of finding the derivative f* of a
function f:

(1) Find the domain of .
(2) Find the value of f'(x) when it is defined.
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y

A

y

N

e
== 7

/

/ x x
Ax >0, Ay <0 Ax <0, Ay>0
y ¥y
/ SN— X 7 ~— x
Ax>0, Ay>0 Ax <0, Ay <0
/ N X / S x
Ax>0, Ay=0 Ax <0, Ay=0
Figure 2.1.2
EXAMPLE 1 Find the derivative of the function

flx) = x3

In this and the following examples we let x vary over the real numbers and
Ax vary over the nonzero infinitesimals. Let us introduce the new variable y
with the equation y = x* We first find Ay/Ax.
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y=x%
y + Ay = (x + Ax)?,
Ay = (x + Ax)3 — x3,
Ay (x + Ax)P® - X3
Ax Ax ’

Next we simplify the expression for Ay/Ax.

Ay  (x* + 3x? Ax + 3x(Ax)® + (Ax)®) — x3
Ax Ax
3x? Ax + 3x(Ax)? + (Ax)?
- Ax
= 3x? + 3x Ax + (Ax)%

Then we take the standard part,

st

A

—i’) = st3x% + 3x Ax + (Ax)?)
= st(3x?) + st(3x Ax) + st((Ax)?)
=3x2 40+ 0=3x2%

A
Therefore, f(x) = st(l) = 3x2.
Ax

We have shown that the derivative of the function
flx)=x*
is the function f(x) = 3x2

with the whole real line as domain. f(x) and f'(x) are shown in Figure 2.1.3.

Figure 2.1.3

EXAMPLE 2 Find f’(x) given f(x) = /x.

Case 7 x < 0. Since /x is not defined, f'(x) does not exist.

47
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Case 2 x = 0. When Ax is a negative infinitesimal, the term

,/\+A\—f \/0+A\— /6

Ax

is not defined because . /Ax is undefined. When Ax is a positive infinitesimal,

the term
\/\ + Ax - f «/ 1
Ax A\ \/K

is defined but its value is infinite. Thus for two reasons, f'(x) does not exist.

Case 3 x> 0.Lety = \/: Then
¥+ Ay = ./x + Ax,
Ay = x4 Ay — JN,
E _/x Ax — \ﬂ

Ax Ax
We then make the computation
Ay v Ax = ) (Sx A+ )
Ax Ax (VX + Ax + /%)

_ (x + Ax) — x

Ax(/x + Ax + \/;)
Ax 1
a Ax(/x + Ax + \/,\_') - VX + Ax + \ﬂ

Taking standard parts, st

1
K) - S[(Q/.\' + Ax + \ﬂ)
[
si(/x + Ax -+ \/§)
1
st/ x + Ax) + Sl‘(\/;)
|

1
VRN RN

Therefore, when x > 0, fx) = lﬁ.
2 /X
So the derivative of f(x) = \/;
1

is the function f(x) = ,

2./x

and the set of all x > 0 is its domain (see Figure 2.1.4).
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Figure 2.1.4 2vX%

EXAMPLE 3 Find the derivative of f(x) = 1/x.

Case 7 x = 0. Then 1/x is undefined so f"(x) is undefined.

Case2 x # 0.
y=1/x,
1
) Ay = s
y+ay X + Ax
1 1
Ay = - —,
Y x+ Ax  x
H_ 1/(x + Ax) — 1/x
Ax Ax '
Simplifying,
Hix + Ax) = 1/x  x —(x + Ax) _ —Ax
Ax T ox(x + Ax)Ax  x(x + Ax) Ax
_ -1
T ox(x + Ax)

Taking the standard part,

St(—‘J—) = St _—1_ — ___1___
Ax x(x + Ax) st{x(x 4+ Ax))

_ 1 _ v 1
T stx)st(x + Ax) T xex  x*
Thus f(x) = —1/x2
The derivative of the function f(x) = 1/x is the function f’(x) = —1/x?

whose domain is the set of all x # 0. Both functions are graphed in Figure
2.1.5.
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®|—

Figure 2.1.56

EXAMPLE 4 Find the derivative of f(x) = |x[.

Case 7 x > 0. In this case |x| = x, and we have

y=x
y+ Ay = x + Ax,
Ay = Ax,
Ay
— =1, (x)=1.
o £
Case 2 x < 0. Now |x| = —x, and
y = —X,

y+ Ay = —(x + Ax),
Ay = —(x + Ax) — (—x) = —Ax,
él__ Ax

=— 5 - b x) = - L
6356’3 X = O Then
y=0,
y+ Ay =0 + Ax| = |Ax],
Ay = |Ax|,
and Q—@il_ 1 1fAX>0,
Ax  Ax  |-1 ifAx <0

The standard part of Ay/Ax is then 1 for some values of Ax and —1 for
others. Therefore f*(x) does not exist when x = 0.

In summary,
1 if x>0,
S(x)=9 -1 ifx <0,
undefined if x = 0.

Figure 2.1.6 shows f(x) and f'(x).
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X X

The derivative
Figure 2.1.6 y=|x| of y =| x|

The derivative has a variety of applications to the physical, life, and social
sciences. It may come up in one of the following contexts.

Velocity: If an object moves according to the equation s = f(t) where ¢ is
time and s is distance, the derivative » = f'(z} is called the velocity of the object at
time ¢.

Growth rates: A population y (of people, bacteria, molecules, etc.) grows
according to the equation y = f(f) where ¢ is time. Then the derivative y' = f7(¢) is
the rate of growth of the population y at time ¢.

Marginal values (economics): Suppose the total cost {or profit, etc.) of
producing x items is y = f(x) dollars. Then the cost of making one additional item
is approximately the derivative y' = f’(x) because ' is the change in y per unit change
in x. This derivative is called the marginal cost.

EXAMPLE 5 A ball thrown upward with initial velocity b ft per sec will be at a height

y = bt — 162
feet after ¢ seconds. Find the velocity at time ¢. Let ¢ be real and At # 0,
infinitesimal.
y + Ay = b(t + At) — 16(t + Ar)?,
Ay = [b(t + Af) — 16(t + Ar)*] — [bt — 16t7],
Ay  [b(t + At) — 16(t + At)*] — [bt — 16t]
A At
b At — 32t At — 16(Ar)?
- At
= b — 32t — 16 At.
st(&) = st(b — 32t — 16 At)
At
= st(b — 32t) — st(16 Ar)
=b—-32%t—-0=5b— 32t
At time ¢ sec, v=y =b— 32 ft/sec.

Both functions are graphed in Figure 2.1.7.
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Figure 2.1.7 y=>bt —161* v=>5b—32

EXAMPLE 6 Suppose a bacterial culture grows in such a way that at time ¢ there are
t* bacteria. Find the rate of growth at time t = 1000 sec.

y=1t> y =3 byExample I.
At ¢t = 1000, ¥ = 3,000,000 bacteria/sec.

EXAMPLE 7 Suppose the cost of making x needles is \ﬂ dollars. What is the

marginal cost after 10,000 needles have been made?

y=yx y= 2—\1/;; by Example 2.

! = -1— dollars per needle.

At x = 10,000, G
» ) 2./10,000 200

Thus the marginal cost is one half of a cent per needle.

PROBLEMS FOR SECTION 2.1

Find the derivative of the given function in Problems 1-21.

1 f(x) = x? 2 fO=2+3

3 fx)=1— 2x? 4 fx)=3x>+2
5 (6 = 4t 6 fx) =2 - 5x

7 1) = 43 8 fiy= -2

9 f) =5 /u 10 fw = Ju+2
11 gx) = x/x 12 glx) = 1//x

13 gty =172 14 gy =13
15 S =3y + 4y 16 fO) =2y + 4
17 fx)=ax+b 18 Sx) = ax?

19 f(x) = Jax + b 20 fx) = 1(x +2)

21 F) = 1/(3 - 2x)



2.2 DIFFERENTIALS AND TANGENT LINES 53

22 Find the derivative of f(x) = 2x? at the point x = 3.

23 Find the slope of the curve f(x) = \/x — 1 at the point x = 5.

24 An object moves according to the equation y = 1/(t + 2),¢ > 0. Find the velocity as a
function of ¢.

25 A particle moves according to the equation y = t*. Find the velocity as a function of t.

26 Suppose the population of a town grows according to the equation y = 100t + ¢2. Find
the rate of growth at time ¢t = 100 years.

27 Suppose a company makes a total profit of 1000x — x? dollars on x items. Find the
marginal profit in dollars per item when x = 200, x = 500, and x = 1000,

28 Find the derivative of the function f(x) = |x + 1].

29 Find the derivative of the function f(x) = |x3|.

30 Find the slope of the parabola y = ax* + bx + ¢ where a, b, ¢ are constants.

2.2 DIFFERENTIALS AND TANGENT LINES

Suppose we are given a curve y = f(x) and at a point (a, b) on the curve the slope
['(a) is defined. Then the tangent line to the curve at the point (g, b), illustrated in
Figure 2.2.1, is defined to be the straight line which passes through the point (a, b)
and has the same slope as the curve at x = a. Thus the tangent line is given by the
equation

Ix) = b =f'(a)(x — a),
or I(x) =f"(a)(x — a) + b.

I(x)
{a, b)

y
7 (a, b) 10

Figure 2.2.1 Tangent lines.

EXAMPLE 1 For the curve y = x>, find the tangent lines at the points (0, 0), (1, 1),
and (—3%, —1) (Figure 2.2.2).

The slope is given by f’(x) = 3x2. At x = 0, f(0) = 3+0? = 0. The tangent
line has the equation

y=0x—-0)+0, or y=0.
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Ln

_ 3 |
Y=irty y=3x-2

Figure 2.2.2

At x =1, f'(1) = 3, whence the tangent line is
y=3x-1)+1, or y=3x-—2
Atx = =%, f'(=% = 3+(—%)* = 2, so the tangent line is
y=2x— (=) + (-8, or y=ix+1i
Given a curve y = f(x), suppose that x starts out with the value a and then

changes by an infinitesimal amount Ax. What happens to y? Along the curve, y will
change by the amount

fla + Ax) — f(a) = Ay.
But along the tangent line y will change by the amount

lla + Ax)y — lla) = [f'(@)(@a + Ax — a) + b] — [f"(a)(a — a) + b]
= {"(a) Ax.

When x changes from a to a + Ax, we see that:

change in y along curve = f(a + Ax) — f{a),
change in y along tangent line = f’(a) Ax.

In the last section we introduced the dependent variable Ay, the increment
of y, with the equation

Ay = f(x + Ax) — f(x).

Ay is equal to the change in y along the curve as x changes to x + Ax.
The following theorem gives a simple but useful formula for the increment Ay,

INCREMENT THEOREM

Let y = f(x). Suppose f'(x) exists at a certain point x, and Ax is infinitesimal.
Then Ay is infinitesimal, and
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Ay = f'(x) Ax + s Ax

for some infinitesimal &, which depends on x and Ax.

PROOF
Case 1 Ax = 0. In this case, Ay = f'(x) Ax = 0, and we put ¢ = Q.
Case 2 Ax # 0. Then

Ax ~ [(x);

Ay
X
so for some infinitesimal ¢,

Ay _ .,
-A—x—f(x)+a.

Multiplying both sides by Ax,
Ay = f'(x) Ax + ¢ Ax.

EXAMPLE 2 Let y = x3, so that y' = 3x2. According to the Increment Theorem,
Ay = 3x? Ax + e Ax
for some infinitesimal ¢. Find ¢ in terms of x and Ax when Ax # 0. We have
Ay = 3x? Ax + e Ax,
Ay

7 = 3x2

Ax x" + e,
Ay

g =— — 3x2,
Ax 3x

We must still eliminate Ay. From Example 1 in Section 2.1,
Ay = (x + Ax)® — x3,

A
3y 3xAx 4 (Ax)>.
Ax

Substituting, g = (3x? + 3x Ax + (Ax)?) — 3x2%.
Since 3x? cancels,

g = 3x Ax + (Ax)2

We shall now introduce a new dependent variable dy, called the differential
of y, with the equation

dy = f'(x) Ax.

dy is equal to the change in y along the tangent line as x changes to x + Ax. In Figure
2.2.3 we see dy and Ay under the microscope.
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Ay = change in y along curve
dy = change in y along tangent line

Figure 2.2.3

To keep our notation uniform we also introduce the symbol dx as another
name for Ax. For an independent variable x, Ax and dx are the same, but for a
dependent variable y, Ay and dy are different.

DEFINITION

Suppose y depends on x,y = f(x).

(i) The differential of x is the independent variable dx = Ax.
(i) The differential of y is the dependent variable dy given by

dy = f'(x)dx.

When dx # 0, the equation above may be rewritten as

dy

=0
Compare this equation with

Ay

v (%)

The quotient dy/dx is a very convenient alternative symbol for the derivative f'(x).
In fact we shall write the derivative in the form dy/dx most of the time.

The differential dy depends on two independent variables x and dx. In
functional notation,

dy = df (x, dx)
where df'is the real function of two variables defined by

Af (x, dx) = f'(x) dx.
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When dx is substituted for Ax and dy for f'(x) dx, the Increment Theorem takes the
short form

Ay = dy + gdx.

The Increment Theorem can be explained graphically using an infinitesimal micro-
scope. Under an infinitesimal microscope, a line of length Ax is magnified to a line
of unit length, but a line of length ¢ Ax is only magnified to an infinitesimal length e.
Thus the Increment Theorem shows that when f'(x) exists:

(1) The differential dy and the increment Ay = dy + ¢dx are so close to
each other that they cannot be distinguished under an infinitesimal
microscope.

(2) The curve y = f(x) and the tangent line at (x, y) are so close to each
other that they cannot be distinguished under an infinitesimal micro-
scope; both look like a straight line of slope f'(x).

Figure 2.2.3 is not really accurate. The curvature had to be exaggerated
in order to distinguish the curve and tangent line under the microscope. To give an
accurate picture, we need a more complicated figure like Figure 2.2.4, which has a
second infinitesimal microscope trained on the point (a + Ax, b + Ay) in the field
of view of the original microscope. This second microscope magnifies ¢dx to a
unit length and magnifies Ax to an infinite length.

(a+Ax,b+Ay)

(a+Ax, b+Ay)

Figure 2.2.4

57
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EXAMPLE 3 Whenever a derivative f'(x) is known, we can find the differential
dy at once by simply multiplying the derivative by dx, using the formula
dy = f'(x) dx. The examples in the last section give the following differentials.

(a) y = x3 dy = 3x?dx.
(b) y=1x dy = Ec: where x > 0.
2/ x
() y = 1/x, dy = —dx/x* when x # 0.
dx when x > 0,

(d) y = |x, dy ={ —dx when x < 0,

undefined when x = 0.
(e) y=bt — 16¢2, dy=(b— 32)dt

The differential notation may also be used when we are given a system of
formulas in which two or more dependent variables depend on an independent
variable. For example if y and z are functions of x,

y=Jx), z=gx),
then Ay, Az, dy, dz are determined by

Ay = flx + Ax) — f(x), Az = g(x + Ax) — g(x),
dy = f'(x)dx, dz = g'(x) dx.

EXAMPLE 4 Given y = 4x,z = x?, with x as the independent variable, then
Ay =3(x + Ax) —ix = L Ax,
Az = 3x? Ax + 3x(Ax)? + (Ax)?,
dy =31dx, dz=3x%dx.
The meaning of the symbols for increment and differential in this example

will be different if we take y as the independent variable. Then x and z are
functions of y.

x = 2y, z = 8y’

Now Ay = dy is just an independent variable, while

I

Ax =2y + Ay) — 2y = 2 Ay,
Az = B(y + Ay)® — 8)3
= 8[3y% Ay + 3y(Ay)* + (Ay)*]
= 24y% Ay + 24y(Ay)? + 8(Ay)°.
Moreover, dx =2dy, dz =24y dy.

We may also apply the differential notation to terms. If 7(x) is a term with the
variable x, then 7(x) determines a function f,

(%) = f(x).
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and the differential d(z(x)) has the meaning

d(t(x)) = f'(x) dx.

EXAMPLE 5
(a) d(x3) = 3x? dx.

(b) a5 = 2_‘1"\/_; x>0,

d
© d(1/x) = —x—f, x # 0.
dx when x > 0,
(d) d(|x) =< —dx when x < 0,

undefined when x = 0.
(¢) Letu = btand w = —16t% Then
u+w=bt — 162, du + w) = (b — 32t)dt.

PROBLEMS FOR SECTION 2.2

In Problems 1-8, express Ay and dy as functions of x and Ax, and for Ax infinitesimal find an
infinitesimal & such that Ay = dy + ¢ Ax.

1 y=x? 2 y = —5x?

3 y=2/x 4 y=x*

5 y=1/x 6 y=x?

7 y=x—1/x 8 y = dx + x°

9 If y = 2x? and z = x?, find Ay, Az, dy, and dz.

10 Ify = 1/(x + 1) and z = 1/(x + 2), find Ay, Az, dy, and dz.
11 Find d(2x + 1) 12 Find d(x? — 3x)
13 Find d(,/x + 1) 14 Find d(,/2x + 1)
15 Find d(ax + b) 16 Find d(ax?)
17 Find d3 + 2/x) 18 Find d(x,/x)
19 Find d(1/,/x) 20 Find d(x* — x?)
21 Let y = \/x,z = 3x. Find d(y + 2) and d(y/z).
22 Let y = x~ ! and z = x3. Find d(y + z) and d(yz).

In Problems 23-30 below, find the equation of the line tangent to the given curve at the given
point.

23 y=x% (2,9 24 y=2x?; (—12)

25 y=—x2; (0,0) 26 y=+/x (L1
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27 y=3x—4 (1,-1) 28 y=Jt—1; (52

29 y=x* (=2,16) 30 y=x3—x; (0,0

31 Find the equation of the line tangent to the parabola y = x? at the point (x,, x2).

32 Find all points P(x,, x3) on the parabola y = x? such that the tangent line at P passes

through the point (0, —4).

33 Prove that the line tangent to the parabola y = x* at P(x,,x5) does not meet the
parabola at any point except P.

DERIVATIVES OF RATIONAL FUNCTIONS
A term of the form
a1X + Qg

where a,, a, are real numbers, is called a linear term in x; if a; # 0, it is also called
polynomial of degree one in x. A term of the form

a)x* + ax +ag, a; #0
is called a polynomial of degree two in x, and, in general, a term of the form
ax" + a,_ X"+ 4 ax + ag, a, # 0

is called a polynomial of degree n in x.

A rational term in x is any term which is built up from the variable x and real
numbers using the operations of addition, multiplication, subtraction, and division.
For example every polynomial is a rational term and so are the terms

(3x* — 5)(x +2)° (1 4 1/x)°
5x — 11 ’ 312 - x)

A linear function, polynomial function, or rational function is a function which
is given by a linear term, polynomial, or rational term, respectively. In this section we
shall establish a set of rules which enable us to quickly differentiate any rational
function. The rules will also be useful later on in differentiating other functions.

THEOREM 1

The derivative of a linear function is equal to the coefficient of x. That is,

d(bx + ¢)

= b, dbx + ¢) = bdx.
dx

PROOF Let y = bx + ¢, and let Ax # 0 be infinitesimal. Then

y+Ay=b(X +AX) + ¢,
Ay = (b(x + Ax) + ¢) — (bx + ¢) = b Ax,

Ay bAx b
Ax T Ax
dv

Therefore Y — sub) = b.

dx
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Multiplying through by dx, we obtain at once

dy = bdx.

If in Theorem 1 we put b = 1, ¢ = 0, we see that the derivative of the identity
function f(x) = xis f'(x) = 1; i.e,

dx
—— = = d .
ix 1, dx X

On the other hand, if we put b = 0 in Theorem 1 then the term bx + ¢ is just
the constant ¢, and we find that the derivative of the constant function f(x) = ¢ is
f(x) =0;ie,

dc
— =0 de = 0.
dx ’ ¢

THEOREM 2 (Sum Rule)

Suppose u and v depend on the independent variable x. Then for any value of x
where du/dx and dv/dx exist,

du +v) du dv

I N A du + v) = du + do.

In other words, the derivative of the sum is the sum of the derivatives.

PROOF Let y = u + v, and let Ax # 0 be infinitesimal. Then
y+ Ay = (u + Au) + (v 4+ Av),
Ay =[(u + Au) + (v + Av)] — [u + v] = Au + Ao,
H _Aut+ Av & + &
Ax Ax Ax  Ax’
Taking standard parts,

Y TP [P Lol Y
Axl ~ C\Aax T Aax] T Ylax \ax)
dy du dv

Thus E ——(z; +¢§

By using the Sum Rule n — 1 times, we see that
M=£++ u”, or d(u1+...+un):dul+...+dun.

dx dx dx

THEOREM 3 (Constant Rule)

Suppose u depends on x, and ¢ is a real number. Then for any value of x where
du/dx exists,

d(cu)  du _
ke CE’ d(cu) = ¢ du.
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PROOF Let y = cu, and let Ax # 0 be infinitesimal. Then
Yy + Ay = c(u + Au),
Ay =clu + Au) — cu = c Au,
Ay ¢ Au Au
Ax  Ax  CAx

‘Taking standard parts,

tAy = st Au —cstéﬂ
SAx =3 ch_ Ax

h dy cdu
n = =c—.
whence Ix I

The Constant Rule shows that in computing derivatives, a constant factor
may be moved “outside” the derivative. It can only be used when ¢ is a constant. For

products of two functions of x, we have:

THEOREM 4 (Product Rule)

Suppose u and v depend on x. Then for any value of x where dufdx and dv/dx
exist,

d(uu) dv du
+ v

dx d\ e d(uv) = udv + vdu.

PROOF Let y = uv, and let Ax # 0 be infinitesimal.

y+ Ay =+ Au)(v + Av),
Ay =+ Auw)(v + At) — uv = uAv + v Au + Au Ao,

Ay  ulv +vAu + Au v Av Au Y
= =7 1—

Ax Ax B qu v Ax
Au is infinitesimal by the Increment Theorem, whence
Ay Av Au Av
Ax) = St IE + UE + Au E
t + vest Au + OQ-st av
=Yss
l v Ax Ax|
dy dv du
So d_,\ = lld—x + Ua.

The Constant Rule is really the special case of the Product Rule where v is
a constant function of x, v = ¢. To check this we let v be the constant ¢ and see what

the Product Rule gives us:

d(u-c) dc @ 0 ﬂ _du
dx dY + ‘ax ¢ + “ax T Cdx

This is the Constant Rule.
The Product Rule can also be used to find the derivative of a power of u.
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THEOREM 5 (Power Rule)

Let u depend on x and let n be a positive integer. For any value of x where
dufdx exists,
du

d(un) _ n—1 ny __ n—1
i nu = dw") = nu"~ " du.

PROOF To see what is going on we first prove the Power Ruleforn = 1,2,3, 4.
n=1: Wehaveu" = uand u® = 1, whence

dw”) du a0 du

dx  dx dx’
n =2: We use the Product Rule,
dw?  du-u) du du , du
dx  dx _uﬁ+u?x—2.u.dx'

n=23: Wewrite 4> = u+u? use the Product Rule again, and then use the
result for n = 2.

d(u®) _ d(u + u?) _ ud(uz) L du

dx dx dx dx
du ,du ,du

=U- 2u— + u dx = 3u a

n = 4: Using the Product Rule and then the result for n = 3,

dw®)  du-v’) ud(us) N u3@
dx ~  dx = dx dx

du du du

— .32 K B PYE S

u+3du . +u i u .

We can continue this process indefinitely and prove the theorem for every
positive integer n. To see this, assume that we have proved the theorem for m.
That is, assume that

d(u™)

du
1 — m—l_'
M dx i dx

We then show that it is also true for m + 1. Using the Product Rule and the
Equation 1,

n

dwny _dew) _ dw) o du

dx  dx dx dx
=u mu"‘”@ + u"'@ =(m + Du™
B dx ax dx’
dw™* ) du
Th = Dy
us dx (m + Du dx

This shows that the theorem holds for m + 1.
We have shown the theorem is true for 1, 2, 3, 4. Set m = 4; then the theorem
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holds for m + 1 = 5. Set m = 5; then it holds for m + 1 = 6. And so on.
Hence the theorem is true for all positive integers n.

In the proof of the Power Rule, we used the following principle:

PRINCIPLE OF INDUCTION

Suppose a statement P(n) about an arbitrary integer n is true when n = 1.
Suppose further that for any positive integer m such that P(m) is true, P(m + 1)
is also true. Then the statement P(n) is true of every positive integer n,

In the previous proof, P(n) was the Power Rule,

d(u")_ "_1@
dx dx’

The Principle of Induction can be made plausible in the following way. Let
a positive integer n be given. Set m = 1;since P(1) is true, P(2) is true. Now set m = 2;
since P(2) is true, P(3) is true. We continue reasoning in this way for n steps and con-
clude that P(n) is true.

The Power Rule also holds for n = 0 because when v # 0,u° =1 and
dljdx = Q.

Using the Sum, Constant, and Power rules, we can compute the derivative
of a polynomial function very easily. We have

d(X") — \,n—l
dx . ’
dlex") ey
T = e
and thus
dla,x" + a,_,x""" + 4+ a;x + ag) et ,
dx =yt hx +a,_(n—=Dx""" 4+ -+ ay.
1.5
EXAMPLE 1 A=3x7) = —3.5x% = — 15x%,
dx
6x* —2x3 + x — 1
EXAMPLE 2 d(6x XX ) = 24x3 — 6x% 4+ 1.

dx

Two useful facts can be stated as corollaries.
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COROLLARY 1

The derivative of a polynomial of degree n > O is a polynomial of degree n — 1.
(A nonzero constant is counted as a polynomial of degree zero.)

COROLLARY 2
du +c) du

If u depends on x, then o o

whenever du/dx exists. That is, adding a constant to a function does not change
its derivative.

In Figure 2.3.1 we see that the effect of adding a constant is to move the curve
up or down the y-axis without changing the slope.
For the last two rules in this section we need the formula for the derivative

of 1/v.
u
|
| u+c
|
N\ I
]
1
u
!
N\
x
du _ d(u+tc)
Figure 2.3.1 dx dx
LEMMA

Suppose v depends on x. Then for any value of x where v # 0 and dv/dx exists,

d(1/v) _ 1 dv d(l) _ —v—lzdl’-

dx v? dx’ v

PROOF Let y = 1/v and let Ax # 0 be infinitesimal.

v+ Ay =

v+ AV
1 1

Ay = v+ Av v
Ay  1f(v + Av) — 1/jv
Ax Ax

v— (v + Av)

- Axv(v + Av)
1 Av

T (v + Av) Ax
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Taking standard parts,

st ) —g oL A
Ax| v(v + Av) Ax

Y PR P
- u(v+Av)SZ;

1 Av
= —Fst Kx- .
Therefore Q = —i éﬁ
dx v? dx

THEOREM 6 (Quotient Rule)

Suppose u, v depend on x. Then for any value of x where dujdx, dv/dx exist and
v #0,

d(ufv) vdufdx — udv/dx u vdu — udo
= ) s A=
dx v v v

PROOF We combine the Product Rule and the formula for d(1/v). Let y = u/v. We
write y in the form

1 1
Then dy = d(—u) = du + ud(l)
v v v

THEOREM 7 (Power Rule for Negative Exponents)

Suppose u depends on x and n is a negative integer. Then for any value of x
where duf/dx exists and u # 0, d(u")/dx exists and

d(u™ _ du

T nu"'la, A"y = nu"~ ! du.
PROOF Since n is negative, n = —m where m is positive. Let y = v = u~™ Then
y = 1/u™. By the Lemma and the Power Rule,
dy 1 du™)
dx — (u™? dx
|

m—1""

dx

= —u—ﬁ,-mu
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du
_ (_ —2m, m—1
(—mu™*"u o
du du
— ( _ —m—1 — n—1
= (—mu i nu I

The Quotient Rule together with the Constant, Sum, Product, and Power
Rules make it easy to differentiate any rational function.

EXAMPLE 3 Find dy when

1

y=x2—3x+1'

Introduce the new variable u with the equation
u=x%-3x+1.

Then y = 1/u, and du = (2x — 3)dx, so

1 —2x-3)
dy= —S5du=-—S—"—""_dx
Y w2 (x2—3x+1)2d/\
4 2 3
EXAMPLE 4 Lety = (x——) and find dy.
Sx —1
Let u = (x*—2)3, v=>5x — 1.
Th _u P du — udv
en y= U, y = 02
Also, du=3+(x* — 22 dx3dx = 12(x* — 2)? - x3 dx,
dv = 5dx.
_(5x — DI2(x* — 2’x dx — (x* — 2)*5dx
Therefore dy = Gx 1)
B (x* — 2)[12(5x — Dx3 — 5(x* — 2)] ix
h (5x — 1)? '
EXAMPLE 5 Lety = 1/x3 + 3/x% + 4/x + 5.
3 6 4
dy=|--5 ——5— —\d
Then y Pl x2) X
EXAMPLE § Find dy where
2
y= (x2 Tx 7 1) '
This problem can be worked by means of a double substitution. Let

1
u=x%+x, v=;+1.

67
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Then y = v2

We find dy, dv, and du,
dy = 2vdv,
dv = —u~?du,
du = (2x + 1)dx.
Substituting, we get dy in terms of x and dx,
dy = 20(—u~"?du)
= —2ou"2(2x + 1)dx

-2 u"?(2x + 1)dx

1
—+1
u

_2(x2 g + 1)(3{2 + x)7%2x + 1)dx.

EXAMPLE 7 Assume that ¥ and v depend on x. Given y = (uv)”2, find dy/dx in
terms of du/dx and dv/dx.

Let s = uv, whence y = s~2, We have

dy = —2s 3 ds,

ds = udv + vdu.
Substituting, dy = —2(uv) (udv + vdu),

dy _af dv du
and T — 2(uv) (ME + vdx)'

The six rules for differentiation which we have proved in this section are so
useful that they should be memorized. We list them all together.

Table 2.3.1 Rules for Differentiation

ay Wxra_, d(bx + ¢) = b dx.
dx
du +v) du  dv _
(2) T—E‘Fdx d(u+v)—-du+dv
d(cu)  du _
(3) e ca. d(cu) = ¢ du.
d(uv) dv du
4) pak ua + va. duv) = udv + vdu.
(5 dw) = nu”_‘@. dw") = nu" ' du (nis any integer).
dx dx
d(ufv)  vdujdx — udv/dx vdu — udv

dx v? dufo) = v?
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An easy way to remember the way the signs are in the Quotient Rule 6 is to
put u = 1 and use the Power Rule S5 withn = —1,
—1dv

d1fo) = d™) = —1-0 2 do = .

PROBLEMS FOR SECTION 2.3

In Problems 1-42 below, find the derivative.

1 SOy =3x*+5x— 4 2 s=43+42 +1t
3 y=(x+ 8> 4 z=2+ 3x)*
5 J&y=@- 6 g(x) = 32 — 5x)°
7 y=(x2+5)>3 8 u=(6+ 2x%H?3
9 u=(6—2x?3 10 w=(1+ 4x3)72
11 w=(l—-4x%"? 12 y=1+x"1+x"24 x3
13 fx)=5x+1-1/x) 14 =2+ 3x+ 1)
15 p=42x —x+3)? 16 y=—02x+ 3+ 4x !
1 1
17 Y= 18 L N
-3
19 S= T w1 20 s= (2t + 1}(3t — 2)
21 h(x) = Hx* + 1)(5 — 2x) 22 y=02x3+ 42 —-3x+1)
23 v = (32 + 1)(2t — 4 24 = (=2x+4+3x Yx+1-5x7Y
x+1 2 — 3x
25 y_x—l 26 w—1+2x
x2 -1 x
27 e 28 U= 2
_-DE-2 ot
» R 30 Y= 11
2l —x72
31 )’———3)(,1_4)‘_2 32 y=4x -5
33 y= 6 34 y= 2X(3_\' — 1)(4 - 2X)
35 y = 3(x* + D2x? — 1)(2x + 3) 36 p=(@x + 37 4 (x — 42
_ 1 — (2 -1 -2
37 Z_(2x+1)(x—3) 38 y=x*+1)""3x - 1)
39 y=[2x+ 1)1+ 317! 40 s=[2 + 1P+
2 4
41 y=Qx + P + 1)? 42 y= (x - x—3)

In Problems 43-48, assume u and v depend on x and find dy/dx in terms of du/dx and dv/dx.

43 y=u—v 44 y:uzp
45 y =4du + v? 46 y=1/u + v)
47 y = 1ljup 48 y=(u+ v)2u —v)

49 Find the line tangent to the curve y = 1 + x 4+ x? + x? at the point (1, 4).
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50 Find the line tangent to the curve y = 9x~% at the point (3, 1).
0 st Consider the parabola y = x* + bx + c. Find values of b and ¢ such that the line y = 2x
is tangent to the parabola at the point x = 2,y = 4.
O s2 Show that if u, v, and w are differentiable functions of x and y = uww, then
dy dw drv du
= U0—— + UW—— + UW-—

dx dx dx dx’

0O 53 Use the principle of induction to show that if n is a positive integer, uy,...,u, are
differentiable functions of x, and y = u; + - - + u,, then

Q _duy o du,
dx  dx dx’
0O 54 Use the principle of induction to prove that for every positive integer »,
1
1+2+-"+HZM.
2
0 55 Every rational function can be written as a quotient of two polynomials, p(x)/g(x).

Using this fact, show that the derivative of every rational function is a rational function.

2.4 INVERSE FUNCTIONS
Two real functions f and g are called inverse functions if the two equations

y=f(x), x=g0)

have the same graphs in the (x, y) plane. That is, a point (x, y) is on the curve y = f(x)
if, and only if, it is on the curve x = g(y). (In general, the graph of the equation
x = g(y) is different from the graph of y = g(x), but is the same as the graph of
y = f(x); see Figure 2.4.1.)

y Yy
Y1 [+ f(y1)
Yo +—g(y0)
g(xy)
Sxo)
/ l
Xo X / J;’l pd
y=f(x) y=2g(x)
x =g(y) x=f(y)

Figure 2.4.1 Inverse Functions

For example, the function y = x%, x > 0, has the inverse function x = /y;
| % y

the function y = x> has the inverse function x = V).



2.4 INVERSE FUNCTIONS
If we think of f as a black box operating on an input x to produce an output

f(x), the inverse function g is a black box operating on the output f(x) to undo the
work of f and produce the original input x (see Figure 2.4.2).

x x = g(f(x))

) £

Figure 2.4.2

Many functions, such as y = x?, do not have inverse functions. In Figure
2.4.3, we see that x is not a function of y because at y = 1, x has the two values x = 1
and x = — L

Often one can tell whether a function f has an inverse by looking at its
graph. If there is a horizontal line y = ¢ which cuts the graph at more than one point,
the function f has no inverse. (See Figure 2.4.3.) If no horizontal line cuts the graph
at more than one point, then f has an inverse function g. Using this rule, we can see
in Figure 2.4.4 that the functions y = |x| and y = /1 — x? do not have inverses.

Figure 2.4.3

AN

y=|x|

No inverse functions
Figure 2.4.4

Table 2.4.1 shows some familiar functions which do have inverses. Note

that 1 chcased—x— !
at in ea ' dy ~ Ay
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Table 2.4.1
inverse
function dy function dx _ 1
y=/ dx x =gy dy  dyjdx
y=x-+c¢ 1 XxX=y-—c 1
y = kx k x = y/k 1/k
1 1
2
y=x* x>0 2x x=./y =
\/ 2\/; 2x
r=x2 x<0 2x \‘——\/-r __L_i
) o - ’ T Y 2 y N 2x
1 1
y=1/x -2 x =1y = —x?

Suppose the (x, y) plane is flipped over about the diagonal line y = x. This

will make the x- and y-axes change places, forming the (y, x) plane. If / has an inverse
function g, the graph of the function y = f(x) will become the graph of the inverse
function x = g(y) in the (y, x) plane, as shown in Figure 2.4.5.

The following rule shows that the derivatives of inverse functions are always

reciprocals of each other.

INVERSE FUNCTION RULE

Suppose f and g are inverse functions, so that the two equations
y=f(x) and  x=gQy)

have the same graphs. If both derivatives ['(x) and g'(y) exist and are nonzero,
then

, 1
X) = ——;
J'(x) 70
that is,
ap_ 1
dx — dx/dy’

PROOF Let Ax be a nonzero infinitesimal and let Ay be the corresponding change

in y. Then Ay is also infinitesimal because f'(x) exists and is nonzero because
f(x) has an inverse function. By the rules for standard parts,

, Ay Ax
S 80) = st( Ax) . st(z\;
Ay A
Therefore f'(x) = 1

g£o)
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y x
(a0, k)
(k. 1)
X y
@) y=kx x=%
y x
%l+c)
/(0, ) (I+e 1)
/ " o
(b) y=xtc / x=y=—c
y X
11
(%},) (4’ 2)
X y
© y=x%x20 x=y
y X
11
()
x y
1 1
(4'—5)
@ y=x%,x20 x—/y
Figure 2.4.5

The formula

73

dy 1
dx  dx/dy

in the Inverse Function Rule is not as trivial as it looks. A more complete statement is

d . . .
dl computed with x the independent variable
X

1
= —— computed with y the independent variable.
dx/dy
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Sometimes it is easier to compute dx/dy than dy/dx, and in such cases the
Inverse Function Rule is a useful method.

EXAMPLE 1 Find dy/dx where x = 1 + y~3.
Before solving the problem we note that

1
y: ,
¥x —1

so x and y are inverse functions of each other. We want to find

d_y _ a1/ Yx — 1)
B dx

dx
with x the independent variable. This looks hard, but it is easy to compute
dx d(1+y?
dy dy

with y the independent variable.

SOLUTION Z—x = =3y 4,
),‘

dy 1L 1,
dx  —=3y™* 37
We can write dy/dx in terms of x by substituting,

dy 1
& —{x = 1)743,

EXAMPLE 2 Find dy/dx where x = y° + y* + y. Compute dy/dx at the point (3, 1).

Although we cannot solve the equation explicitly for y as a function of x, we
can see from the graph in Figure 2.4.6 that there is an inverse function

y = f(x).

(1, 3)

3,1

©,0) y ©, 0) X
(_3, —1)

(-1, =3)

xX=y> 44y

Figure 2.4.6
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By the Inverse Function Rule,

dx 4 2
&y Sy* + 3y* 4+ 1,
dy 1

dx Syt 432+ 1

This time we must leave the answer in terms of y. At the point (3,1), we
substitute 1 for y and get dy/dx = 1/9.

For y = 0, the function x = y" has the inverse function y = x'/ In the next
theorem, we use the Inverse Function Rule to find a new derivative, that of y = x!/".

THEOREM 1

If nis a positive integer and
1/n

y =x"
then & = 1x(“”’_‘.
dx n

Remember that y = x*/" is defined for all x if n is odd and for x > 0 if n is
even. The derivative Ex‘”"" !is defined for x # 0if nis odd and for x > Qif nis even.

If we are willing to assume that dy/dx exists, then we can quickly find dy/dx
by the Inverse Function Rule.

x =y,
dx — n—1
-
dy_ 11,
dx dx/dy ny"! n
— l(xl/n)l—n — lx(l—n)/n — lx(lln)—l
n n n ’

Here is a longer but complete proof which shows that dy/dx exists and com-
putes its value.

PROOF OF THEOREM 7 Let x # 0 and let Ax be nonzero infinitesimal. We first
show that

Ay = (x + Ax)t" — xtn
is a nonzero infinitesimal. Ay # 0 because x + Ax # x. The standard part of
Ay is
sHAY) = st{(x + Ax)1") — st(x1/m)
= x1n — xln = @,


hjkeisler
Text Box
(3,1),

hjkeisler
Text Box
1

hjkeisler
Text Box
1/9.
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Therefore Ay is nonzero infinitesimal.

Now X = yn,
i - nyn-l,
dy
X
—_— n ""_l.
Ay )
Ay { 1,
Therefore C Sy =
Ax  ny n
@ — 1\-(1/11)—1
dx n
Y y

=
B x

y=x/3 y=xli

Figure 2.4.7

Figure 2.4.7 shows the graphs of y = x'/3 and y = x¥/*. At x = 0, the curves
are vertical and have no slope.

EXAMPLE 3 Find the derivatives of y = x!/"for n = 2, 3, 4.

d(x¥y) 1 1

dx = 5 , x > 0.
d(x'3) 1 YA

Froae gx , x # 0.
) 1

(Zx ) = Zx_m, x > 0.

Using Theorem 1 we can show that the Power Rule holds when the exponent
is any rational number.

POWER RULE FOR RATIONAL EXPONENTS
Let y = x" where 1 is a rational number. Then whenever x > 0,

dy i
—=rx""
dx x
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PROOF Let ¥ = m/n where m and n are integers, n > 0. Let

u = xtm, y = u™
Then du = lx(”""1
dx n
dy du
and Z =gyl
dx m dx

— m(xlln)m—l (lx(lln)— 1)
n

— mx(m/n)’—l — rxr—l.
n
EXAMPLE 4 Find dy/dx where
y=x*"
dy 3 (—3/7)—-1 3 -10/7
— = —=X = —=Xx .
dx 7
EXAMPLE 5 Find dy/dx where
_ 1
Y= on
Let u=2+x¥, y=ul
du 3
Then — = —x1/?
ix 2%
dy , du
— = —-Uu —_—
dx dx

= —y~2 3 1 _ 3 x!7?
2(2 + x*%*

PROBLEMS FOR SECTION 2.4

In Problems 1-16, find dy/dx.

1 x =3y + 2y 2 x=y"+1, y>0
3 x=1-2y% y>0 4 x=2+p"+4
5 x=02+2", y>0 6 y=1//x

7 y = x*3 8 y=/2x

9 ¥ =G x+ DASx = 1) 10 y=(2x7 4+ 1)
11 y=1+42x13 4 4x?3 4 6x 12 y=xTU4 4 374
13 y=x—~x"2 14 x=y+ 2y

15 x=3y" 42, y>0 16 x =11+ /%
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In Problems 17-25, find the inverse function y and its derivative dy/dx as functions of x.

17 x=ky+c k#0 18 x=y+1

19 x=2y*"+1 y=0 20 x=2y+1 y<0

21 x=y"=3 y20 2 x=p2+3y—1, y> -3

23 x=y"+y+ 1, y=20 24 x=1y*+1/y—-1, y>0

25 x=ﬁ+2y, y >0

26 Show that no second degree polynomial x = ay? + by + ¢ has an inverse function.

27 Show that x = ay® + by + ¢, y > —b/2a, has an inverse function. What does its

graph look like?

28 Prove that a function y = f(x) has an inverse function if and only if whenever x; # x,,

Jx) # fx,).

TRANSCENDENTAL FUNCTIONS

The transcendental functions include the trigonometric functions sin x, cos x, tan x,
the exponential function e*, and the natural logarithm function In x. These functions
are developed in detail in Chapters 7 and 8. This section contains a brief discussion.

1 TRIGONOMETRIC FUNCTIONS

The Greek letters 0 (theta) and ¢ (phi) are often used for angles. In the calculus it is
convenient to measure angles in radians instead of degrees. An angle 8 in radians is
defined as the length of the arc of the angle on a circle of radius one (Figure 2.5.1).
Since a circle of radius one has circumference 27,

360 degrees = 2n radians.

G}

Figure 2.5.1

Thus a right angle is
00 degrees = n/2 radians.

To define the sine and cosine functions, we consider a point P(x, y) on the
unit circle x> + y?> = 1. Let § be the angle measured counterclockwise in radians
from the point (1, 0) to the point P(x, y) as shown in Figure 2.5.2. Both coordinates
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x and y depend on 6. The value of x is called the cosine of 8, and the value of y is the
sine of 6. In symbols,

x = cos 6, y=sin8.

P(x, y)

(1,0

Figure 2.5.2

The tangent of 0 is defined by

tan 8 = sin &/cos 8.

Negative angles and angles greater than 2z radians are also allowed.

The trigonometric functions can also be defined using the sides of a right
triangle, but this method only works for # between 0 and /2. Let 0 be one of the
acute angles of a right triangle as shown in Figure 2.5.3.

Figure 2.5.3 b

opposite side

Then sinf=_—"—— """ = a
hypotenuse ¢
adjacent side b

cosf=—-—— =—,
hypotenuse ¢

tan 0 — oppos1te s.1de _a.
adjacent side b

The two definitions, with circles and right triangles, can be seen to be equivalent
using similar triangles.
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Table 2.5.1 gives the values of sin 8 and cos 8 for some important values of 6.

Table 2.5.1

8 in degrees 0° 30° 45° 60° 90" 180° 270° 360°
0 in radians 0 /6 n/4 /3 /2 7 3n/2 2n
sin 0 0 1/2 V22 NEY 1 0 -1 0
cos § 1 NEZ NG 172 0 -1 0 1

A useful identity which follows from the unit circle equation x? + y? = 1 is
sin?§ + cos? 0 = 1.

Here sin®  means (sin 6)2.

Figure 2.5.4 shows the graphs of sin 6 and cos 8, which look like waves that
oscillate between | and — 1 and repeat every 2n radians.

The derivatives of the sine and cosine functions are:

d(sin )
= cos 0.
do
d(cos 8) _ in o
= sin 0.
sin #

yd .
N o NN N

Figure 2.5.4

In both formulas 8 is measured in radians. We can see intuitively why these
are the derivatives in Figure 2.5.5.
In the triangle under the infinitesimal microscope,

A(sin §) _ adjacent side _
A8 7 hypotenuse

0s 8,

A(cos 6) o opposite side

-~ = — i 6-
Ab hypotenuse st
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A(cos 8)_

A(sin 8)

Figure 2.5.5

Notice that cos @ decreases, and A(cos 6) is negative in the figure, so the derivative

of cos B is —sin 0 instead of just sin 8.
Using the rules of differentiation we can find other derivatives.

EXAMPLE 1 Differentiate y = sin? 0. Let u = sin 6, y = u?. Then
dy

du .
d_9=2uﬁ=2sm90059.

EXAMPLE 2 Differentiate y = sin (1 — cos ). Let u = sin 8, v = 1 — cos 0. Then
y=u-+v, and

dy dv du . .
0= u% + UE = sin 6(—(—sin 6)) 4+ (1 — cos G) cos

= sin* 6 + cos § — cos? 6.

The other trigonometric functions (the secant, cosecant, and cotangent
functions) and the inverse trigonometric functions are discussed in Chapter 7.

2 EXPONENTIAL FUNCTIONS

Given a positive real number b and a rational number m/n, the rational power b™"

is defined as
bin = /b,
the positive nth root of b™. The negative power b™™" is

1
—min _
b =

As an example consider b = 10. Several values of 10™" are shown in Table
2.5.2.

81
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Table 2.56.2

1073 | 107** | 107! | 1072 | 10742 | 10° | 10 | 102 | 10' | 10%* | 10°

1 I I 1 1
| —= | = | = | = | 1 | Y10 | Y100 | 10 |10,/10 | 1000
1000 | 10,/10 | 10 | Y100 | Y10 v Vio

If we plot all the rational powers 10™" we get a dotted line, with one value
for each rational number m/n, as in Figure 2.5.6.

x

10

4+

34

24

L y = 10%, x rational

': .............. |

R ° | X
Figure 2.5.6

By connecting the dots with a smooth curve, we obtain a function y = 10%,
where x varies over all real numbers instead of just the rationals. 10% is called the
exponential function with base 10. It is positive for all x and follows the rules

1077t = 10°. 10°, 1097 = (107,
The derivative of 10* is a constant times 10%, approximately

d(10®)
dx

~ (2.303)10%,

To see this let Ax be a nonzero infinitesimal. Then

d(10%) [0¥F4% — 107 (10% — D10 10%% — 1
dx ’ [ Ax ) Ax ’ Ax

The number st[(10** — 1)/Ax] is a constant which does not depend on x and can be
shown to be approximately 2.303.

If we start with a given positive real number b instead of 10, we obtain the
exponential function with base b, y = b*. The derivative of b* is equal to the constant
st[(b** — 1)/Ax] times b*. This constant depends on b. The derivative is computed as

follows:
d(b¥) prHAN (bA.\- — 1 |:bA~" — 1] ]
= = —_ = Sf b'\.
dx 9t|: Ax St Ax Ax

The most useful base for the calculus is the number e. ¢ is defined as the real
number such that the derivative of e is ¢ itself,
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dle™)
dx

In other words, ¢ is the real number such that the constant

e — 1]
t =1
| o]

(where Ax is a nonzero infinitesimal). It will be shown in Section 8.3 that there is
such a number ¢ and that e has the approximate value

e ~ 2.71828.

The function y = e* is called the exponential function. e* is always positive and follows
the rules

X

€a+b = ¢%. eb’ ea-b — (ea)b’ eO = 1.

Figure 2.5.7 shows the graph of y = ¢*,

Figure 2.5.7

EXAMPLE 3 Find the derivative of y = x?¢*. By the Product Rule,

Ay _ @) )

= x%¢* + 2xe~.
dx dx dx

3 THE NATURAL LOGARITHM

The inverse of the exponential function x = ¢ is the natural logarithm function,
written
y=Inx.
Verbally, In x is the number y such that ¢ = x. Since y = In x is the inverse function
of x = ¢%, we have
et = g, In(e”) = a.
The simplest values of y = In x are
In(l/e) = —1, In(l) =0, Ine = 1.

Figure 2.5.8 shows the graph of y = In x. It is defined only for x > 0.
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y
2
T /
} ——
0 1 2 3 X
—17
=27 y=Inx
Figure 2.5.8

The most important rules for logarithms are

In(ab) =Ina + Inb,
In(a®) = b+Ina.

The natural logarithm function is important in calculus because its derivative
is simply 1/x,
dilnx) 1

dx = ;, (X > 0)

This can be derived from the Inverse Function Rule.

If y=lnx,

then x =é,
ﬁ - €y,
dy

dy 1 11
dx dx/dy ¢ x

The natural logarithm is also called the logarithm to the base e and is some-
times written log, x. Logarithms to other bases are discussed in Chapter 8.

. . 1
EXAMPLE 4 Differentiate y = Ty
X

dy  —1 d(nx) 1

dx  (Inx)? dx T x(ln x)?

4 SUMMARY
Here is a list of the new derivatives given in this section.

d(sin x)
dx

= COS X.
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d(cos x) — sinx
dx )
dee”)
ix ¢
dinx) 1
dx = ; (X > 0)

Tables of values for sin x, cos x, e, and In x can be found at the end of the
book.

PROBLEMS FOR SECTION 2.5

In Problems 1-20, find the derivative.

1 y = cos? 0 2 s =tan®¢
3 y=2sinx + 3cosx 4 y = sin x+cos x
1 1
5 W= 6 W= —
coS z sin z
7 y =sin" 8 8 y = tan" @
9 s=tsint 10 s=COSt
t—1
11 y = xe* 12 y=1/1 + &%
13 y = (In x)? 14 y=xlnx
15 y=¢e*elnx 16 y=¢e"ssinx
17 u=/o(l — ¢ 18 u=(1+ el — e
19 y=x"Inx 20 y=(nx)"
In Problems 21-24, find the equation of the tangent line at the given point.
21 y = sin x at (n/6, 1) 22 y = cos x at (w/4, /2/2)
23 y=x—Inxat(e,e — 1) 24 y=e *at(0,1)
CHAIN RULE

The Chain Rule is more general than the Inverse Function Rule and deals with the
case where x and y are both functions of a third variable t.

Suppose x = f(1), y = G(x).
Thus x depends on ¢, and y depends on x. But y is also a function of ¢,
y = gl),
where g is defined by the rule
8(e) = G(f (1))

The function g is sometimes called the composition of G and f (sometimes written
g = Go f)
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The composition of G and f may be described in terms of black boxes.
The function g = Go fis a large black box operating on the input ¢ to produce
g(t) = G(f(1). If we look inside this black box (pictured in Figure 2.6.1), we see two
smaller black boxes, fand G. First foperates on the input ¢ to produce f(t), and then
G operates on f(t) to produce the final output g(t) = G(f(t)).

The Chain Rule expresses the derivative of g in terms of the derivatives of f/
and G. It leads to the powerful method of “change of variables” in computing deriva-
tives and, later on, integrals.

O
! - f G
&) = G(f(1))
g
Figure 2.6.1 Composition g = Gof

CHAIN RULE

Let f, G be two real functions and define the new function g by the rule
gl) = G(f(2)).

At any value of t where the derivatives f'(t) and G'(f (1)) exist, g'(t) also exists
and has the value

gt = G(f NS ®.

PROOF Let x = f(1), y = g0, y = G(x).
Take t as the independent variable, and let At # 0 be infinitesimal. Form the
corresponding increments Ax and Ay. By the Increment Theorem for
x = f(t), Ax is infinitesimal. Using the Increment Theorem again but this
time for y = G(x), we have

Ay = G'(x) Ax + g Ax

for some infinitesimal e, Dividing by At,

Ay ., Ax Ax
Then taking standard parts,
Ay , Ax
S[(E) = G(X)S[(E) + 0,
or g =G0 =GOS

EXAMPLE 1 Find the derivative of g(¢) = In (sin ¢). g(t) is the natural logarithm
of the sine of ¢. It can be written in the form
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9(®) = G(f ()

where f(@) =sint, G(x) = Inx.
1
We have f(®) = cos t, G'(x) = o
By the Chain Rule,
g =GO '®
cost
= ——+COSt=—"1.
sin ¢ sin ¢

eXAMPLE 2 Find the derivative of g(t) = /3t + 1. g(¢) has the form
g(t) = G(f (),

where fO=3t+1 Gx = x
We have =3 Gkx = %x‘ 1z,
Then g =GO

3

23t + 1

In practice it is more convenient to use the Chain Rule with dependent
variables x and y instead of functions f and g.

1
= — 1—1/2 =
2(3t+ }~ 143

CHAIN RULE WITH DEPENDENT VARIABLES
Let
x=f@), y=gl)=Gx)
Assume g'(t) and G'(x) exist. Then
L dy dydx . _dy
{0 o dedi @ity dy = de

where dx/dt, dy/dt are computed with t as the independent variable, and dy/dx
is computed with x as the independent variable.

Let us work Examples 1 and 2 again with dependent variables.

EXAMPLE 1 (Continued) Letx =sint, y=Inx.
Find dy/dt using Chain Rule (i) and dy by using Chain Rule (ii).

. dx dy 1
') E—cost, X
dy_dy de 1 cost

= = —+COS —.
dt dx dt x sin t
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dy 1
(i) dx = cos t dt, I
1 t
dy = labc = —costdt = C.idt.
X x sin ¢
EXAMPLE 2 (Continued) Let x =3t 4+ 1, y=./x.
, dx dy 1 _,
(1) E - 35 d‘\' - 5-\ 5
dy dydx 3 —y2 3 —1z
at “dxdr 2Y 0 0D
. dy 1
dx = 3d — = _x" 12
(11) X t . 2\

1 1 , 3
dy = Ex_l'zdx = 5(3t + 1)7123 4 = §(3t + )72 4z

The equation
dy _ dy d
dt — dx dt

with r as the independent variable is trivial. We simply cancel the dx’s. But when
dy/dx is computed with x as the independent variable while dx/dt is computed with ¢
as the independent variable, the two dx’s have different meanings, and the equation
is not trivial.

Similarly, the equation

dv
dy = d-idx

is trivial with x as the independent variable but not when ¢ is the independent variable
in dy and dx, while x is independent in dy/dx.

The Chain Rule shows that when we change independent variables the
equations

dy dydx dy
i S avd YT L™
remain true.

The Inverse Function Rule can be proved from the Chain Rule as follows.
Let

y=/x), x=gQy

be inverse functions whose derivatives exist. Then

dydv_dy _
dxdy —dy
dy 1 . 1
whence — = x) ==~
dx  dx/dy / g0

Using the Chain Rule we may write the Power Rule in a general form.
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POWER RULE

Let r be a rational number, and let u depend on x. If u > 0 and du/dx exists,
then

d(un ., du
= ru

dx dx’

This is proved by letting y = 4" and computing dy/dx by the Chain Rule,
dy _dydu oo du
=y

dx  dudx dx’
The Chain Rule has two types of applications.
. B dy dy _dydx
(1) Givenx = f(r)and y = G(x), find — dt - Use dt  dx dr’
dy dy _ dy/dt
2 = dy=g(), find = '
(2) Givenx = f(f)and y = g(1), find . Use -  dx/dt

Applications of type (1) often arise when a new dependent variable x is
. d L . .
introduced to help compute f . Applications of type (2) arise when two variables

x and y both depend on a third variable ¢, for example, when x and y are the co-
ordinates of a moving particle and ¢ is time.
We give three examples of type (1) and then two of type (2).

EXAMPLE 3 Suppose that by investing ¢ dollars a company can produce

t
x = — — 100, t > 1000
*=10 = 05

items, and that it can sell x items for a total profit of
2

X
y = 5x — E(S
Find % , which is the marginal profit with respect to the amount invested.
dx 1 dy X
We have =10 x50

By the Chain Rule,

Q_Qﬁzk_xw

dr  dx dt 50] 10
f
~ 1
_L 10 %%
N 50 /10
— 07— —
T 50000

Thus after ¢ dollars have been invested, an additional dollar invested will
bring 0.7 — /5000 dollars of additional profit.
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EXAMPLE 4 Find dy/dt where y = (5¢t* — 2)!/4,

Let x=52-2 y=x'4
dx dy 1 _3,4
Then yri 10¢, Te = 4x ,
dy dydx | A
—_— === | 10t
it~ dx dt (4" (101

= 14—0(5t2. — 2)734,

EXAMPLE 5 Find dy/dx where y = \/sin (4x + 1) + cos (4x — 1). This problem
requires three uses of the Chain Rule.

Let u=sin(dx + 1) + cos(dx — 1), y=./u.
Then by the Chain Rule,
dy dy du R
xd o dx
Now let v = sin (4x + 1), w = cos (4x — 1), u=0ov+w

Then du dv  dw

ax dx T dx
We use the Chain Rule twice more to find dv/dx and dw/dx.
v = sin (4x + 1).

dv d(dx + 1)
i cos (4x + I)T = 4cos (4x + 1),

w = cos (4x — 1),

dw d(dx — 1)
a = —Sin (4X — I)T

Finally, we combine everything to get
dy 1 du L fdv dw
E=Aﬁ'a=Aﬁﬁa+a>
_4cos(dx + 1) — dsin(4x — 1)
2 /sin(x + D) + cos(@x — 1) |

= —4sin (4x — 1).

If a particle is moving in the plane, its position (x, y) at time ¢ will be given by
a pair of equations

x=f@), y=2g

These are called parametric equations. The slope of the curve traced out by this particle
can be found by the Chain Rule,

dy dyjide  g(t)

dx dx/dt @)
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whenever the derivatives exist and f’(¢) # 0. This is a Chain Rule application of
type (2).

EXAMPLE 6 A ball thrown horizontally from a 100 ft cliff at a velocity of 50 ft/sec
will follow the parametric equations

x = 50¢, y = 100 — 1612, in feet.
Find the slope of its path at time ¢t (Figure 2.6.2).
dx dy

= =50
dt 30, dt

dy dyjdt 3%

— 321,

S0 == oo
dx  dx/dt 50
¥y
x
x = 50¢
Figure 2.6.2 y =100 — 162

EXAMPLE 7 A particle moves according to the parametric equations

x=—t y=t.
Find the slope of its path.
dx 2 dy
== — — =2t
a=0 L =

dx  dx/dt 3> -1 -

We see from Figure 2.6.3 that the path of this particle is not the graph of a
function, and in fact contains a loop and crosses the point (0, 1) twice, at

t = —land ¢ = 1. The path is vertical at the points t = +./1/3, where there
is no slope. At the point (0, 1), the two slopes of the path are dy/dx = —1
whent = —1,and dy/dx = 1 whent = 1.

EXAMPLE 8 A particle moving according to the parametric equations
X = Cos i, y =sint

will move counterclockwise around the unit circle at one radian per second
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X ¥
t t
x=1t—1 y=1t?
Y
t=—3/2 t=3/2
t= %l
t=+/1/3 t=—+/1/3
t=0 x

Figure 2.6.3

beginning at the point (1, 0), as shown in Figure 2.6.4. Find the slope of its
path at time ¢,

dx , dy
— = —sint, — = Cos t.

dt dt

The slope is
dy dy/dt  cost
dx dx/dt  sint’

In terms of x and y the slope is

dy  x

dx

X =cosf, y=sinf

Figure 2.6.4
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PROBLEMS FOR SECTION 2.6

In Problems 1-44, find dy/dx.
1 y=x+2 2 y=+7+2
3 y=5—x 4 y 1 —10x
5 Jr’=_1——— 6 y !
2+ 3x \/m
_ e i1 8§  y=33 i

il

y
9 y=.x>+1 10 y=+1—x*
11 y = sin (3x) 12 y = cos (4 — 2x)
13 y = sin (x~ %) 14 y = cos \/;
15 y=e** 16 y=e ¥
17 y = €% * 18 y = In(nx)
19 y=cosu, u=ée 20 y=tanuy,u=Inx
21 y=u® u=1-—4x 22 y=uu=1-x*
23 y=sinu+siny, u=1—-x% ov=2x-1
24 y=e“+¢, u=1-3x, v=3—4x
25 y=e" u=ﬁ, v =sinx
26 y=Ilnu, wu=tany, v=1/x
27 y=u u=1+, v=x*-1
28 y=u', u=3v+4 v=1/x+1)
29 y=uY, u=1+4+1p v=x>+1
30 y=u*+1, u=v*+1 v=x>+1
31 y=(J/x* -1+ /x*+1)» 32 y=(x+ /3 - 4x)" 12
33 y=3xsin(2x — 1) 34 ¥y = sin (2x) cos (3x)
35 x =cos(3t), y=sin(31) 36 x=¢, y=Int
37 x=sint, y=sin(2f) 38 x = sin(ef), y = cos(e’)
39 x=In@+1), y=1 40 X = ey =i
41 x=\ﬂ7:7, y=\/m 42 x=1+\3/f, y=2+\3ﬁ
43 x=Jit1 y=Y72 44 x=3t‘—++—21, y=2tt:23
45 A particle moves in the plane according to the parametric equations

x=12+1, y=3
Find the slope of its path.
46 An ant moves in the plane according to the equations
x=(1 -1, y=\/I‘.
Find the slope of its path.

a 47 Let y depend on u, u depend on v, and v depend on x. Assume the derivatives dy/du,
du/dv, and dv/dx exist. Prove that

&y _dydudo
dx  dudvdx’
[ 48 Let the function f(x) be differentiable for all x, and let g(x) = f(/(x)). Show that g'(x) =

S UGS x)-
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2.7 HIGHER DERIVATIVES

DEFINITION

The second derivative of a real function f is the derivative of the derivative of
J,and is denoted by f". The third derivative of f is the derivative of the second
derivative, and is denoted by ", or f®. In general, the nth derivative of f is
denoted by ™.

If y depends on x, y = f(x), then the second differential of y is defined ro be
d?y = f"(x)dx>.

In general the nth differential of y is defined by
d"y = fU(x)dx".

Here dx? means (dx)? and dx" means (dx)".

We thus have the alternative notations

*y d"y
i N

= /)
for the second and nth derivatives. The notation

Y= P = S

is also used.
The definition of the second differential can be remembered in the following
way. By definition,

dy = f'(x)dx.
Now hold dx constant and formally apply the Constant Rule for differentiation,
obtaining
d(dy) = f"(x)dx dx,
or d?y = f"(x)dx>

(This is not a correct use of the Constant Rule because the rule applies to a real
constant ¢, and dx is not a real number. It is only a mnemonic device to remember the
definition of d?y, not a proof.)

The third and higher differentials can be motivated in the same way. If we
hold dx constant and formally use the Constant Rule again and again, we obtain

dy = f'(x)dx,

d?y = f"(x)dx dx = f"(x)dx?,

Py = f"(x)dx?dx = f"(x)dx3,

d*y = fO(x) dx3 dx = f9(x) dx*,
and so on.

The acceleration of a moving particle is defined to be the derivative of the
velocity with respect to time,

a = dv/dt.
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Thus the velocity is the first derivative of the distance and the acceleration is the
second derivative of the distance. If s is distance, we have

ds iz_s

EXAMPLE 1 A ball thrown up with initial velocity b moves according to the equation
y = bt — 161>
with y in feet, ¢ in seconds. Then the velocity is
v =>b — 32t ft/sec,
and the acceleration (due to gravity) is a constant,

a = —32 ft/sec?.

EXAMPLE 2 Find the second derivative of y = sin (28).

First derivative Put u = 20. Then

. dy du
y = sin u, a—cosu, @—2.
By the Chain Rule,
dy dy du
d—ﬁ_ E.E_ 008(26)'2,
dy
0= 2 cos (26).
Second derivative Let v = 2 cos (20). We must find dv/df. Put u = 20. Then
dv du
= —_—— - i _— = 2.
v=2cosu, T 2 sin u, 70

Using the Chain Rule again,

d*y dv  dv du .
= = 0 — = { — 29 . 2-
J0° 28 au dg - (TSm0
This simplifies to
dty

EXAMPLE 3 A particle moves so that at time ¢ it has gone a distance s along a
straight line, its velocity is v, and its acceleration is a. Show that

a="v @
T ds”
By definition we have

é dv
a ‘T dr
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so by the Chain Rule,

_dvds _ dv
“Ena Vas

EXAMPLE 4 Ifa polynomial of degree n is repeatedly differentiated, the kth deriva-
tive will be a polynomial of degree n — k for k < n, and the (n + 1)st deriva-
tive will be zero. For example,

y = 3x> — 10x* + x? — 7x + 4.
dyjdx = 15x* — 40x3 + 2x — 7.
d*y/dx? = 60x> — 120x? + 2.
d*yjdx? = 180x? — 240x,
d*y/dx* = 360x — 240.
d3y/dx® = 360,  d®p/dx® = 0.

Geometrically, the second derivative f”(x) is the slope of the curve y = f7(x)
and is also the rate of change of the slope of the curve y = f(x).

PROBLEMS FOR SECTION 2.7

In Problems 1-23, find the second derivative.

-5
1 y=1/x 2 y=x3 3 V=0
4 flx)=3x"2 5 Sx)=x"2 4+ x"12 ¢ f@) =12 — a2
7 [0 =1/t 8 y =@t —1° 9 y=sinx
10 y =cosx 11 y = A sin (Bx)
12 y = A cos (Bx) 13 y=e™
14 y=e 15 y=Inx
1
16 y=xlnx 17 y= P
x—35 2x — 1
18 y=./3t+2 19 z=x_|_2 20 Z=3x—2
r+ 1\? t
21 z=x/x+1 22 s=(t+—2> 23 s= i3
24 Find the third derivative of y = x* — 2/x,
25 A particle moves according to the equation s = 1 — 1/t2, t > 0. Find its acceleration.
26 An object moves in such a way that when it has moved a distance s its velocity is v = \/;
Find its acceleration. (Use Example 3.)
27 Suppose u depends on x and d?u/dx? exists. If y = 3u, find d*y/dx2.
28 If d*ujdx? and d?v/dx* exist and y = u + v, find d*y/dx2.
29 If d2u/dx? exists and y = 42, find d2y/dx>.
30 If d%u/dx? and d?v/dx? exist and y = uv, find d?y/dx>.
31 Let y = ax? 4+ bx + ¢ be a polynomial of degree two. Show that dy/dx is a linear
function and d%y/dx? is a constant function.
32 Prove that the nth derivative of a polynomial of degree n is constant. (Use the fact that

the derivative of a polynomial of degree k is a polynomial of degree k — 1.)
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2.8 IMPLICIT FUNCTIONS

We now turn to the topic of implicit differentiation. We say that y is an implicit
function of x if we are given an equation

o(x,y) = tx,y)

which determines y as a function of x. An example is x + xy = 2y. Implicit differentia-
tion is a way of finding the derivative of y without actually solving for y as a function
of x. Assume that dy/dx exists. The method has two steps:

Step 7 Differentiate both sides of the equation a(x, y) = 1(x, y) to get a new equation

dlo(x, ) _ d(z(x, y))
(M) dx ~  dx

The Chain Rule is often used in this step.

Step 2 Solve the new Equation 1 for dy/dx. The answer will usually involve both x
and y.

In each of the examples below, we assume that dy/dx exists and use implicit
differentiation to find the value of dy/dx.

EXAMPLE 1 Given the equation x + xy = 2y, find dy/dx.

d(x + xy) _ d(2y)

Step 1 I o We find each side by the Sum and Product Rules,
dix + xy) _dx +dxy) dx+ xdy+ ydx
dx N dx - dx
dy
=1 - .
+ x i +y
ay) _ dy
dx dx’
Thus our new equation is
dy dy
1 - =2-=,
+x dx +y dx
Step 2 Solve for dy/dx.
dy dy
d_y _ 14+y
dx 2 —x

We can check our answer by solving the original equation for y and using
ordinary differentiation:

X+ xy=2y.
2y —xy = x.
X

y =

T2 -—x
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By the Quotient Rule,
dy (2-x-1-x(-1) 2

dx 2 — x)2 2 - x)?*

A third way to find dy/dx is to solve the original equation for x, find dx/dy,
and then use the Inverse Function Rule.

X + xy =2y.
2y
X = .
I+y
dx (1+y)2-2y-1 2
dy 1+ y? 1+ y?
dy 1
—:—1 )2
It 2( + )

To see that our three answers

dy 14y dy 2 dy 1 5
= _— = _— = - 1 )
dx 2-x’ dx (2-x? dx 2( + )

are all the same we substitute 5 X for y:
— X
X

by 1+y Tiox 2

dx 2-x  2—x (2-x?%

dy 1 1 x \? 2
—=—1 2=—1 = .
ax -2t 2( +2—x) 2 -7

In Example 1, we found dy/dx by three different methods.

(a) Implicit differentiation. We get dy/dx in terms of both x and y.

(b) Solve for y as a function of x and differentiate directly. This gives dy/dx
in terms of x only.

(c) Solve for x as a function of y, find dx/dy directly, and use the Inverse
Function Rule. This method gives dy/dx in terms of y only.

EXAMPLE 2 Given y + ./y = x?, find dy/dx.
dy + /y) _ dix?
dx '

dx
dy 1 _,,dy
&z CAN
ix T30 A T
dy 2x
dx 14 Ly~

This answer can be used to find the slope at any point on the curve. For ex-
ample, at the point (\/5, 1) the slope is
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22 2/2_4/2

L3172 32 3

while at the point (— \/i, 1) the slope is

A-/2)  —-4/2
i

T30 "

To get dy/dx in terms of x, we solve the original equation for y using the

quadratic formula:
y+ .y —x*=0,

fz—li«/1+4x2.

2

Since /vy = 0, only one solution may occur,

\/’=—1+«/1+4X2.

2
—1+ /1 +4x*\?
Then y= ( - )
The graph of this function is shown in Figure 2.8.1. By substitution we get
dy 2x _ 2x
dx 14+ 141+ 1T+ &)Y
y

(=2, 1) (2, 1)

0, 0) X

— y2
Figure 2.8.1 ytVy=x

Often one side of an implicit function equation is constant and has derivative
Zero.

EXAMPLE 3 Given x2 — 2y* = 4,y < 0, find dy/dx.

d(x* — 2y%) _dé4)

dx dx
d(—le;Tz@=2x—4y%.
d4
Moo
2x—4y%=0.
dy_—2x_x

dx —4y 2y

99



100

Figure 2.8.2
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Solving the original equation for y, we get
-2yt =4 — 2 y < 0:
2 ﬁ —4 .
) 5 )
x2 -4
2

(A
o

Thus dy/dx in terms of x is

dy

X X X
dx 2y , P _4 A4
_ /_2__

The graph of this function is shown in Figure 2.8.2.

x2—=2yt=4,y<0

Implicit differentiation can even be applied to an equation that does not

by itself determine y as a function x. Sometimes extra inequalities must be assumed
in order to make y a function of x.

EXAMPLE 4 Given

2)

©))

x4 y2 =1,

find dy/dx. This equation does not determine y as a function of x; its graph
is the unit circle. Nevertheless we differentiate both sides with respect to x
and solve for dy/dx.

dy dy X
dr_ A

2x + 2y— =0, = .
X4 dx dx ¥

We can conclude that for any system of formulas S which contains the
Equation 2 and also determines y as a function of x, it is true that
dy hY

dx  y’

We can use Equation 3 to find the slope of the line tangent to the unit circle

at any point on the circle. The following examples are illustrated in Figure 2.8.3.
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y
/2, /372
/
(=1,0) p
(v8/3, —1/3)
Figure 2.8.3 xP4yr=1 ©, -
4y dy 1 1 \/3
L =0at(0,—-1), 2= ———at(=,¥X"],
"R ﬁat(z z)

d
%) is undefined at (— 1, 0).

dy
Y Jat Y2 2
dx V8a 3°73 dx

The system of formulas

N 1),

x2+yP=1 y=0

givesus . y=./1—x2 dy I A
dx y 1 — x2

On the other hand the system
*+y?=1 y<0

gives us y=—J1— x2, y _ _x_ X _
dx y 1 _ x2

EXAMPLE 5 Find the slope of the line tangent to the curve
@ Xy P+ xyt =y + 1
at the points (1, 1), (1, — 1), and (0, —1).

The three points are all on the curve, and the first two points have the same
x coordinate, so Equation 4 does not by itself determine y as a function of x.

We differentiate with respect to x,

dx*y* + xy°) _dly + 1)

dx T odx
dy dy dy
Syt 5,224 6 1L xSt =
xTy® + x 3ydx+y+xydx iy

and then solve for dy/dx,
4.3 6 5.2 5 dy
5x*y® + y® + (3x°y* + 6xy —1)—dx=0,

dy _ 5x*p 4 yS
dx 3%y 4+ 6xy° — 1

&)
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dy
dx
dy
dx
dy
dx

Substituting,

6
=—— at(l. I\
g at (1. 1)

= —1 at(l,—=1)

+1 at(0, —1).

Equation 5 for dy/dx is true of any system S of formulas which contains
Equation 4 and determines y as a function of x.

Here is what generally happens in the method of implicit differentiation.
Given an equation

(6) (x,y) = olx, y)

between two terms which may involve the variables x and y, we differentiate both
sides of the equation and obtain

d(xlx, y) _ dlo(x, y)

0 dx dx

We then solve Equation 7 to get dy/dx equal to a term which typically involves both
x and y. We can conclude that for any system of formulas which contains Equation 6
and determines y as a function of x, Equation 7 is true. Also, Equation 7 can be used
to find the slope of the tangent line at any point on the curve ©(x, y) = o(x, y).

PROBLEMS FOR SECTION 2.8

In Problems 1-26, find dy/dx by implicit differentiation. The answer may involve both x and y.

1 xy =1 2 2x2 -3y =4, y<0
3 3 +y=2 4 x3 =y
5 y=1/(x +y) 6 yi4+3y—5=x
7 x24+yTi=1 8 xp =y +x
9 x4+ 3xy 4+ 2 =0 10 x/y +3y=2
1 X =y -yt 1 12 i+ Sy=x+y
13 y=1Jxy+1 14 x*+yt=5
15 xy? —3x%y +x =1 16 2y 2+ x" =y
17 y = sin (xy) 18 y=cos(x +y)
19 = cos? y 20 x =siny+ cosy
21 p ==t 22 & =x24y
23 ef=Iny 24 Iny=sinx
25 y2 =1In(2x + 3y) 26 In(cosy) =2x + 5
In Problems 27-33, find the slope of the line tangent to the given curve at the given point or points.
27 x2+xy+y*=7at(l,2)and (—1,3)
28 x+ y*=yat(0,0), (0 1), 0, —1),(—6,2)

29 x-y'=3at21),2 ~1.(/30
30 tan y = x? at (n/4, 1)
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32
33
34
35
36

EXTRA PROBLEMS FOR CHAPTER 2 103

2sin® x = 3 cos y at (n/3, /3)

y+er=1+Inxat(1,0)

& = In y at (0, e)

Given the equation x2 + y? = 1, find dy/dx and d?y/dx?.
Given the equation 2x? — y* = 1, find dy/dx and d*y/dx?.

Differentiating the equation x2 = y* implicitly, we get dy/dx = x/y. This is undefined
at the point (0, 0). Sketch the graph of the equation to see what happens at the point (0, 0).

EXTRA PROBLEMS FOR CHAPTER 2

BOW N e

o @0 3 N W

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25

27

29

30
31

2

Find the derivative of f(x) = 4x® — 2x + 1.
Find the derivative of f(¢) = 1/,/2t — 3.
Find the slope of the curve y = x(2x + 4) at the point (1, 6).

A particle moves according to the equation y = 1/(t> — 4). Find the velocity as a
function of 1.

Given y = 1/x3, express Ay and dy as functions of x and Ax.

Given y = 1/\/;, express Ay and dy as functions of x and Ax.

Find d(x? + 1/x?).

Find d(x — 1/x).

Find the equation of the line tangent to the curve y = 1/(x — 2) at the point (1, —1).
Find the equation of the line tangent to the curve y = 1 + x\/; at the point (1, 2).
Find dy/dx where y = —3x® — 5x + 2.

Find dy/dx where y = 2x — 5)7 2.

Find ds/dt where s = (3t + 4)(t? — 5).

Find ds/dt where s = (462 — 6)" 1 4+ (1 — 21)" 2

Find du/dv where u = (2v* — 50 + 1)/(»® — 4).

Find du/dv where u = (v + (1/v))/(v — (1/v)).

Find dy/dx where y = x1/2 + 4x32,

Find dy/dx where y = (1 + /x)*.

Find dy/dx where y = x'/3 — x~ 14,

Find dy/dx where y = ¢* cos® x.

Find dy/dx where x = \/y + y%y > 0.

Find dy/dx where x = y~ V2 + =1y > 0.

Find dy/dx where y = /1 — 3x.

Find dy/dx where y = sin (2 + /%).

Find dy/dx where y = u™ Y%, u = 5x + 4.

Find dy/dx where y = u®,u = 2 — x>

Find the slope dy/dx of the path of a particle moving so that y = 3t -+ \/? x = (1/) — 2.
Find the slope dy/dx of the path of a particle moving so that y = /4t — 5,x = /3t + 6.
Find d?y/dx? where y = \/4x — 1.

Find d?y/dx? where y = x/(x* + 2).

An object moves so that s = £/t + 3. Find the velocity v = ds/dt and the acceleration
a = d?s/dt>.

Find dy/dx by implicit differentiation when x + y + 2x* + 3y* = 2.
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33
34
35
36

37
38

39

40

41
42
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Find dy/dx by implicit differentiation when 3xy3 + 2x3y = 1.
Find the slope of the line tangent to the curve 2xﬁ -y = \/;c at (1, 1).
Find the derivative of f(x) = [x* — 1}.

Find the derivative of the function

) = {(1)

Let f(x) = (x — ¢)*3. Show that f(x) exists for all real x but that f“(c) does not exist.

Let n be a positive integer and ¢ a real number. Show that there is a function g(x) which
has an nth derivative at x = ¢ but does not have an (n + 1)st derivative at x = ¢. That
is, g%(c) exists but g®* (c) does not.

if x is an integer,
otherwise.

(a) Letu = x|,y = u® Show that at x = 0, dy/dx exists even though du/dx does not.
(b) Letu = x* y = |u|l. Show that at x = 0, dy/dx exists even though dy/du does not.

Suppose g(x) is differentiable at x = ¢ and f(x) = |g(x)}. Show that
@ flo=g0ifgl) >0,

() fc)=—g'0)ifgle) <0,

(€) f(c)=0ifg(e) =0andg'(c) =0,

(d) f'(c) does not exist if g(¢) = 0 and g'(c) # 0.

Prove by induction that for every positive integer n, n < 2"

Prove by induction that the sum of the first n odd positive integers is equal to n?,

1+34+5+--4+02n—1)=n’
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HOW TO SET UP A PROBLEM

In applications, a calculus problem is often presented verbally, and it is up to you
to set up the problem in mathematical terms. The problem can usually be described
mathematically by a list of equations and inequalities. The next two sections contain
several examples that illustrate the process of setting up-a problem. The examples
in this section are from algebra and geometry, and those in the next section are from

calculus.
It is sometimes hard to see how to begin on a story problem. It is helpful

to break the process up into three steps:
Step 7 Draw a diagram if possible, and label all quantities involved.
Step 2 Write the given information as a set of equations and/or inequalities.

Step 3 Solve the mathematical problem, and interpret the mathematical solution
to answer the original story problem.

EXAMPLE 1 According to a treasure map, a buried treasure is located due east
of a cave and is 200 paces from a tree. The tree is 30 paces east and 40 paces
north of the cave. How far is the treasure from the cave?

The solution of this problem uses the quadratic formula, which will be
needed throughout the calculus course. We review it here.
QUADRATIC FORMULA Ifa # 0, then
ax? +bx +c=0
if and only if

b+~ dac

2a

X =

We solve Example 1 in three steps.

105
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Step 1 Draw a diagram and label all quantities involved. In Figure 3.1.1, we put
the cave at the origin and let x be the distance from the cave to the target
along the x-axis. The tree is at the point (30, 40), and the treasure is at the

point (x, 0).
}Y
tree
(30,40)
i 200
140
|
30 J
treasure
av
00 w0
Figure 3.1.1

Step 2 Write the known information as a system of formulas. By the distance
formula, we have

200 = /(x — 30)* + (0 — 40)%, x> 0.

The inequality x = 0 arises because the treasure is east of the cave.

Step 3 Solve for x. We square the Distance Formula.

40,000 = (x — 30)% + (0 — 40)> = x* — 60x + 900 + 1600
= x? — 60x + 2500
x? — 60x — 37,500 = 0
To find x we use the Quadratic Formula.
L 60 £ /(60)* —4(~37,500) _ 60 + /153,600
2 2
= 30 + ./38,400

INTERPRET THE SOLUTION Since x > 0, we reject the negative solution. Thus
x = 30 + /38,400 ~ 226 paces. The treasure is approximately 226 paces
from the cave.

Most calculus problems involve two or more variables.

EXAMPLE 2 A six-foot man stands near a ten-foot lamppost. Find the length of
his shadow as a function of his distance from the lamppost.

Step 7 Draw a diagram and label all the quantities involved. In Figure 3.1.2, we let

x = man’s distance from lamppost,
s = length of his shadow.
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lamp

10

Figure 3.1.2 ' x s

Step 2 Write the known information as a system of formulas. By similar triangles we
have

S s+ x
6= 10 x> 0.

The inequality x > 0 arises because the distance cannot be negative.

Step 3 Solve for s as a function of x.

10s = 65 + 6x,
4s = 6x,
s = 3x.

INTERPRET THE SOLUTION s=3x, x>0
The domain of the function is [0, o). The length of the shadow is 3 times
the distance from the lamppost. In this problem, x is the independent
variable and s depends on x.

EXAMPLE 3 Two ships start at the same point at time ¢ = 0. One ship moves north
at 30 miles per hour, while the other ship moves east at 40 miles per hour.
Find the distance between the two ships as a function of time.

Step 7 The ships start at the origin; the y-axis points north; and the x-axis points
cast. The diagram is shown in Figure 3.1.3. x and y are the distances of the
east- and north-moving ships from the origin, and z is the distance between
the ships, all in miles. ¢ is the time in hours.

Step2 t>0, y=30, x=40, z=./x*+y%

30 mph

40 mph —»

Figure 3.1.3
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Step 3 z = /(3007 + (401)? = ,/2500:% = 50t.

INTERPRET THE SOLUTION z = 50t, t=0.

t is the independent variable, and x, y, z all depend on t. The distance between
the ships is 50t miles, where ¢ is the time in hours.

EXAMPLE 4 A brush fire starts along a straight line segment of length 20 ft and
expands in all directions at the rate of 2 ft per second. Find the burned out
area as a function of time.

Step 7 A = total burned out area
A, = area of left semicircle
A, = area of central rectangle
A, = area of right semicircle

distance of spread of fire
= time

~ W
('

The diagram is shown in Figure 3.1.4.

Ay
Ay S
Al AS
S 20 s
Figure 3.1.4
Step 2 s = 2t, t>0.
A, = ins?, A, = 20(2s), Ay = 1ns?

A=A+ Ay + As.
Step 3 A, = 4n(2t)? = 2m2.

A, =20.2+2t = 801,

Ay = in(20)? = 2ne?,

A = 2mt? + 80t + 2mt? = 4nr? + 80

INTERPRET THE SOLUT/ON The burned out area is 4 = 4nt® + 80t sq ft, t > 0,
where ¢ is time in seconds.

An algebraic identity that comes up frequently in calculus problems is
(a — b)a + b) = a* — b%
Sometimes it occurs in the form

a—/B)Ja+/b)=a—b

EXAMPLE 5 The area of square A is twelve square units greater than the area of
square B, and the side of A is three units greater than the side of B. Find the
areas of 4 and B.
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Figure 3.1.56 X A B

Step 1 Let a be the area of A and b the area of B. See Figure 3.1.5.
Step 2 The sides of the squares have length \ﬂz and ./b respectively. Thus
a—b=12 f-ﬁ:&

Step 3 We find \/Zz + \/E

Wa—/b)/a+ /b)y=a—b,
3Ja+/b) =12,
Ja+ . /b=4

Adding the equations \/E+ b=4 and f —ﬁ=3, we obtain
2a=1, \/:zz%, a =% Subtracting the equations gives 2./b = I,

\/I;=%’b=%~

INTERPRET THE SOLUTION The area of square A is 42 square units, and the area

of square B is } square units.

PROBLEMS FOR SECTION 3.1

Find the perimeter p of a square as a function of its area A.

A piece of clay in the shape of a cube of side s is rolled into a sphere of radius . Find r
as a function of s.

Find the volume V of a sphere as a function of its surface area S.

Find the area 4 of a rectangle of perimeter 4 as a function of the length x.

Find the distance z between the origin and a point on the parabola y =1 — x?> as a
function of x.

Express the perimeter p of a right triangle as a function of the base x and height y.

Four small squares of side x are cut from the corners of a large cardboard square of
side s. The sides are then folded up to form an open top box. Find the volume of the
box as a function of s and x.

A ladder of length L is propped up against a wall with its bottom at distance x from the
wall. Find the height y of the top of the ladder as a function of x.

A man of height y stands 3 ft from a ten foot high lamp. Find the length s of his shadow
as a function of y.
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One ship traveling north at 30 mph passes the origin at time t = 0 hours. A second ship
moving east at 30 mph passes the origin at ¢ = 1. Find the distance z between them as a
function of t.
A ball is thrown from ground level, and its path follows the equations

x="bt, y=t— 16’
How far does it travel in the x direction before it hits the ground?
A circular weedpatch is initially 2 ft in radius. It grows so that its radius increases by 1 ft/
day. Find its area after five days.
A rectangle originally has length / and width w. Its shape changes so that its length

increases by one unit per second while its width decreases by 2 units per second. Find
its area as a function of /, w and time ¢.

At p units of pollution per item, a product can be made at a cost of 2 + 1/p dollars per
item. x items are to be produced with a total pollution of one unit. Find the cost.
In economics, the profit in producing and selling x items is equal to the revenue minus the
cost,

P(x) = R(x) — C{x).
If a product can be manufactured at a cost of $10 per item and x items can be sold at
a price of 100 — \/; per item, find the profit as a function of x.

Suppose the demand for a commodity at price p is x = 1000/\[, that is, x = 1000/\/5
items can be sold at a price of p dollars per item. If it costs 100 + 10x dollars to produce
x items, find the profit as a function of the selling price p.

RELATED RATES

In a related rates problem, we are given the rate of change of one quantity and wish to
find the rate of change of another. Such problems can often be solved by implicit
differentiation.

EXAMPLE 1 The point of a fountain pen is placed on an ink blotter, forming a

Step 1

circle of ink whose area increases at the constant rate of 0.03 in.%/sec. Find
the rate at which the radius of the circle is changing when the circle has a
radius of 7 inch. We solve the problem in four steps.

Label all quantities involved and draw a diagram.
{ = time A = area r = radius of circle

Both A and r are functions of t. The diagram is shown in Figure 3.2.1.

. radius r
Figure 3.2.1




Step 2

Step 3

Step 4

3.2 RELATED RATES

Write the given information in the form of equations.
dAjdt =003, A=
The problem is to find dr/dt when r = 1/2.

Differentiate both sides of the equation A = nr? with respect to t.

dA dr dr
v = 2m e whence 0.03 = 2w e

Set r = 4 and solve for dr/dt.

1 dr dr  0.03,
003 = 27I§'d—t, SO 2{ = —n—ln./sec.

EXAMPLE 2 A 10 foot ladder is propped against a wall. The bottom end is being

Step 1

pulled along the floor away from the wall at the constant rate of 2 ft/sec.
Find the rate at which the top of the ladder is sliding down the wall when the
bottom end is 5ft from the wall. Warning: although the bottom end of the
ladder is being moved at a constant rate, the rate at which the top end moves
will vary with time,

t = time,
x = distance of the bottom end from the wall,
y = height of the top end above the floor.

The diagram is shown in Figure 3.2.2,

T

y

t 2 ft/sec —»

Figure 3.2.2 l‘— x“|
Step 2 dx/dt = 2, x2 4+ y? =102 = 100.
Step 3 We differentiate both sides of x*> + y*> = 100 with respect to t.
d d d
2xd—)tC + 2yd%j =0, whence 4x + Zyd—); = 0.
Step 4 Set x = 5ft and solve for dy/dt. We first find the value of y when x = 5.

x2+y2 =100, y=./100 — x*> = /100 — 52 = . /75.
Then we can solve for dy/dt,
dy

2 =
4x 4+ 2y =0,
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dv
40542757 =0,

) .5 2
4 = 4 = ——ft/sec.

- 2\/7_5 - \ﬁ
The sign of dy/dr is negative because y is decreasing,

Related rates problems have the following form.

Given:

(a) Two quantities which depend on time, say x and y.
(b) The rate of change of one of them, say dx/dt.
(c) An equation showing the relationship between x and y.

(Usually this information is given in the form of a verbal description of a physical
situation and part of the problem is to express it in the form of an equation.)
The problem: Find the rate of change of y, dy/dt, at a certain time . (The
time t, is sometimes specified by giving the value which x, or y, has at that time.)
Related rates problems can frequently be solved in four steps as we did in the
examples.

Step 7 Label all quantities in the problem and draw a picture. If the labels are
x, y,and ¢ (time). the remaining steps are as follows:

Step 2 Write an equation for the given rate of change dx/dr. Write another equation
for the given relation between x and y.

Step 3 Differentiate both sides of the equation relating x and y with respect to &.
We choose the time r as the independent variable. The result is a new
equation involving x, y, dx/dt, and dy/dt.

Step 4 Set t = t, and solve for dy/dt. [t may be necessary to find the values of x, y,
and dx/dr at t = 1, first.

The hardest step is usually Step 2, because one has to start with the given
verbal description of the problem and set it up as a system of formulas. Sometimes
more than two quantities that depend on time are given. Here is an example with
three.

EXAMPLE 3 One car moves north at 40 mph (miles per hour) and passes a point P
at time 1:00. Another car moves east at 60 mph and passes the same point P
at time 2:30. How fast is the distance between the two cars changing at the
time 2:00?

It is not even easy to tell whether the two cars are getting closer or farther
away at time 2:00. This is part of the problem.

Step 1t = time,
y = position of the first car travelling north,
x = position of the second car travelling east,
z = distance between the two cars.

In the diagram in Figure 3.2.3, the point P is placed at the origin.
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North
24
] f
40 mph
x 60 mph — |P East
Figure 3:2.3
dy dx
Step 2 =2 =40, == =60, 2 2 =z
P i 4 p X“ 4y z
dx dy dz dz
2x— 4+ 2y— = 2z—, when 60 40y = z—.
Step 3 xdt+ ydt Zdt ce x + 40y Zdt
Step 4 We first find the values of x, y, and z at the time ¢t = 2 hrs. We are given that

when t = 1, y = 0. In the next hour the car goes 40 miles,so at t = 2, y = 40.
We are given that at time ¢ = 24, x = 0. One-half hour before that the car
was 30 miles to the left of P,so att = 2, x = —30. To sum up,

att =2, y=40 and x = -30.
We can now find the value of z at t = 2,
2= /% + 2 = (=30 + 40% = 50.
Finally, we solve for dz/dt at t = 2,

o — 4 . 4 = 0— —_——=— = 4,

The negative sign shows that z is decreasing. Therefore at 2:00 the cars are
getting closer to each other at the rate of 4 mph.

EXAMPLE 4 The population of a country is growing at the rate of one million people

Step 1

Step 2

per year, while gasoline consumption is decreasing by one billion gallons per
year. Find the rate of change of the per capita gasoline consumption when
the population is 30 million and total gasoline consumption is 15 billion
gallons per year.

By the per capita gasoline consumption we mean the total consumption
divided by the population.

t = time

x = population

¥y = gasoline consumption

z = per capita gasoline consumption.

Att =1y,
dx/dt = 1 million = 10°
dy/dt = —1 billion = —10°

z = y/x.

113
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dz _ x(dy/dt) — y (dx/dt)

Step 3

dr x? ’
dz  —10°x — 10°
dr x? '

Step 4 Att = t,, we are given

x = 30 million = 30 x 108
y = 15 billion = 15 x 10°

Thus dz  —10°+30-10° — 10°.15.10°
u _— =
dt (30 - 105)?

45.10'%
= “go0-10 =

The per capita gasoline consumption is decreasing at the annual rate of
50 gallons per person.

We conclude with another example from economics. In this example the
independent variable is the quantity x of a commodity. The quantity x which can be
sold at price p is called the demand function D(p).

x = D(p).
When a quantity x is sold at price p, the revenue is the product
R = px.

The additional revenue from the sale of an additional unit of the commodity is called
the marginal revenue and is given by the derivative

marginal revenue = dR/dx.

EXAMPLE 5 Suppose the demand for a product is equal to the inverse of the square
of the price. Find the marginal revenue when the price is $10 per unit.

Step 1 p = price, x = demand, R = revenue.

Step 2 x = 1/p%, R = px.

Step 3 dR  dx N dp + dp
fer dx P TN TP T e
dx
G _ 9y
dp p T,
so by the Inverse Function Rule,
dp _ I I _l s
R
Substituti dR N 1 l N _1
ubstituting, i p 3 2p = 2p.

Step 4 We are given p = $10. Therefore the marginal revenue is

dR/dx = §5.
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An additional unit sold would bring in an additional revenue of $5.

Here is a list of formulas from plane and solid geometry which will be useful

in related rates problems. We always let 4 = area and V = volume.

Rectangle with sides @ and b: A = ab, perimeter = 2a + 2b

Triangle with base b and height h: 4 = 1bh

Circle of radius r: A = mr2, circumference = 27ar

Sector (pie slice) of a circle of radius r and central angle 0 (measured in
radians): A = 1?0

Rectangular solid with sides @, b,¢: V= abc

Sphere of radius r: V= 411, A = 4m?

Right circular cylinder, base of radius r, height of h:  V = wr?h, A = 2nrh
Prism with base of area B and height h: V = Bh

Right circular cone, base of radius 7, height h:  V = 7r2h/3,

A =7ar/r* + h?

PROBLEMS FOR SECTION 3.2

10

11

Each side of a square is expanding at the rate of 5 cm/sec. How fast is the area changing
when the length of each side is 10 cm?

The area of a square is decreasing at the constant rate of 2 sq cm/sec. How fast is the
length of each side decreasing when the area is 1 sq cm?

The vertical side of a rectangle is expanding at the rate of 1 in./sec, while the horizontal
side is contracting at the rate of 1in./sec. At time ¢t = 1 sec the rectangle is a square
whose sides are 2 in. long. How fast is the area of the rectangle changing at time r = 2 sec?
Each edge of a cube is expanding at the rate of 1 in./sec. How fast is the volume of the
cube changing when the volume is 27 cu in.?

Two cars pass point P at approximately the same time, one travelling north at 50 mph,
the other travelling west at 60 mph. Find the rate of change of the distance between the
two cars one hour after they pass the point P.

A cup in the form of a right circular cone with radius r and height k is being filled with
water at the rate of 5 cu in./sec. How fast is the level of the water rising when the volume
of the water is equal to one half the volume of the cup?

A spherical balloon is being inflated at the rate of 10 cu in./sec. Find the rate of change
of the area when the balloon has radius 6 in.

A snowball melts at the rate equal to twice its surface area, with area in square inches
and melting measured in cubic inches per hour. How fast is the radius shrinking?

A ball is dropped from a height of 100 ft, at which time its shadow is 500 ft from the ball.
How fast is the shadow moving when the ball hits the ground? The ball falls with
velocity 32 ft/sec, and the shadow is cast by the sun.

A 6 foot man walks away from a 10 foot high lamp at the rate of 3 ft/sec. How fast is the
tip of his shadow moving?

A car is moving along a road at 60 mph. To the right of the road is a bush 10 ft away
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and a parallel wall 30 ft away. Find the rate of motion of the shadow of the bush on the
wall cast by the car headlights.

road Pid wall

A car moves along a road at 60 mph. There is a bush 10 ft to the right of the road, and a
wall 30t behind the bush is perpendicular to the road. Find the rate of motion of the
shadow of the bush on the wall when the car is 26 ft from the bush.

L\“ wall
AN
0 /S

road

An airplane passes directly above a train at an altitude of 6 miles. If the airplane moves
north at 500 mph and the train moves north at 100 mph, find the rate at which the
distance between them is increasing two hours after the airplane passes over the train.

A rectangle has constant area, but its length is growing at the rate of 10 ft/sec. Find the
rate at which the width is decreasing when the rectangle is 3 ft long and 1 It wide.

A cylinder has constant volume, but its radius is growing at the rate of 1 ft/sec. Find the
rate of change of its height when the radius and height are both 1 ft.

A country has constant national income, but its population is growing at the rate of
one million people per year. Find the rate of change of the per capita income (national
income divided by population) when the population is 20 million and the national
income is 20 billion dollars.

If at time t a country has a birth rate of 1,000,000t births per year and a death rate of
300,000\/; deaths per year, how fast is the population growing?

The population of a country is 10 million and is increasing at the rate of 500,000 people
per year. The national income is $10 billion and is increasing at the rate of $100 million
per year. Find the rate of change of the per capita income.

Work Problem 18 assuming that the population is decreasing by 500,000 per year.

Sand is poured at the rate of 4 cu in./sec and forms a conical pile whose height is equal
to the radius of its base. Find the rate of increase of the height when the pile is 12 in.
high.
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3.3 LIMITS

A circular clock has radius 5 in. At time ¢ minutes past noon, how fast is the area of the
sector of the circle between the hour and minute hand increasing? (r < 60).

The demand x for a commodity at price pis x = 1/(1 + \/13). Find the marginal revenue,
that is, the change in revenue per unit change in x, when the price is $100 per unit.

x units of a commodity can be produced at a total cost of y = 100 + 5x. The average
cost is defined as the total cost divided by x. Find the change in average cost per unit
change in x (the marginal average cost) when x = 100.

The demand for a commodity at price p is x = 1/(p + p°). Find the change of the price
per unit change in x, dp/dx, when the price is 3 dollars per unit.

In one day a company can produce x items at a total cost of 200 + 3x dollars and can
sell x items at a price of 5 — x/1000 dollars per item. Profit is defined as revenue minus
cost. Find the change in profit per unit change in the number of items x (marginal profit).

In one day a company can produce x items at a total cost of 200 + 3x dollars and can

sell x = 1000/\/; items at a price of y dollars per item.

{a) Find the change in profit per dollar change in the price y (the marginal profit with
respect to price).

(b) Find the change in profit per unit change in x (the marginal profit).

An airplane P flies at 400 mph one mile above a line L on the surface. An observer is at

the point O on L. Find the rate of change (in radians per hour) of the angle 8 between

the line L and the line OP from the observer to the airplane when 8 = #/6.

A train 20 ft wide is approaching an observer standing in the middle of the track at
100 ft/sec. Find the rate of increase of the angle subtended by the train (in radians per
second) when the train is 20 ft from the observer.

Find the rate of increase of ¢>*** when x = 0, y = 0, dx/dt = 5, and dy/dt = 4.

Find the rate of change of In A where A is the area of a rectangle of sides x and y when
x=1,y=2dx/dt =3,dy/dt = 2.

LIMITS

The notion of a limit is closely related to that of a derivative, but it is more general.
In this chapter f will always be a real function of one variable. Let us recall the

definition of the slope of f at a point a:

S is the slope of f at a if whenever Ax is infinitely close to but not equal to

zero, the quotient

fla+ Ax) — f(a)
Ax

is infinitely close to S.

We now define the limit. ¢ and L are real numbers.

DEFINITION

L is thelimit of f(x) as x approaches c if whenever x is infinitely close to but
not equal to c, f(x) is infinitely close to L.

In symbols,

lim f(x) = L

X3¢
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if whenever x &~ ¢ but x # ¢, f(x) &~ L. When there is no number L satisfying the
above definition, we say that the limit of f(x) as x approaches ¢ does not exist.
Notice that the limit
lim f(x)

depends only on the values of f(x) for x infinitely close but not equal to ¢. The value
[(c) itself has no influence at all on the limit. In fact, it very often happens that

lim f(x)

X c

exists but f(c) is undefined.

Figure 3.3.1(a) shows a typical limit. Looking at the point (¢, L) through an
infinitesimal microscope, we can see the entire portion of the curve with x = ¢
because f(x) will be infinitely close to L and hence within the field of vision of the
microscope.

In Figure 3.3.1(b), part of the curve with x = ¢ is outside the field of vision
of the microscope, and the limit does not exist.

Our first example of a limit is the slope of a function.

Sflx)

;

i)

X

(@ limf(x)=L

x—¢

S(x)

45

S
=
<\

Figure 3.3.1 (b) Limit does not exist
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THEOREM 1

The slope of [ at a is given by the limit

fa) = lim WA = J@
Ax—=0 Ax

Verbally, the slope of f at a is the limit of the ratio of the change in f(x) to
the change in x as the change in x approaches zero. The theorem is seen by simply
comparing the definitions of limit and slope. The slope exists exactly when the limit
exists ; and when they do exist they are equal. Notice that the ratio

fla+ Ax) — f(a)
Ax

is undefined when Ax = 0.
The slope of f at a is also equal to the limit

@) — tim L0 =@
x—a xX—a
This is seen by setting
Ax =x — a,
X =a+ Ax.

Then when x & a but x # a, we have Ax ~ 0 but Ax # 0; and

fo) — fla) _ fla+ Ax) — fla)

xX—da Ax

= f(a).

Sometimes a limit can be evaluated by recognizing it as a derivative and
using Theorem 1 above.

2 —
EXAMPLE 1 Evaluate lim M
Ax=0 Ax

Let F(x) = x?. The given limit is just F'(3),

F3 + Ax) - F Ax)? —
F@3) = lim LA = FO o G+ A7 -9
Ax—0 Ax Ax—=0 Ax
F(3)=2.3=6.
2 —_—
Therefore lim (—M—Q = 6.
Ax—0 Ax
The symbol x in
lim f(x)

is an example of a “dummy variable.” The value of the limit does not depend on x
at all. However, it does depend on c. If we replace ¢ by a variable u, we obtain a new
function

L(u) = lim f(x).

xX—u
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A limit lim f(x) is usually computed as follows.

Step 7 Let x be infinitely close but not equal to ¢, and simplify f(x).
Step 2 Compute the standard part st( f(x)).

CONCLUSION  If the limit lim f(x) exists, it must equal sz(f(x)).

Xc
EXAMPLE 1 (Continued) Instead of using the derivative, we can directly compute
. Ax)? —
lim B+ 49" -9
Ax-0 Ax

Step 7 Let Ax ~ 0, but Ax # 0. Then

(3+Ax)2—9_9+6Ax+Ax2—9_6Ax+Ax2

Ax Ax Ax =6+ Ax.

Step 2 Taking standard parts,

3+ Ax)? —
st%#:sr(ﬁdrmhs.
X

Therefore the limit is equal to 6. (See Figure 3.3.2.)

4

f(Ax)

/ (0] Ax

_ (3+ax?-9
Figure 3.3.2 Sax) = ==

EXAMPLE 2 Find lim (2 + 3t — 5).
14
Step 7 Let t be infinitely close to but not equal to 4.
Step 2 We take the standard part.
stt* + 3t ~ 5)=4% + 3.4 — 5 =123,

so the limit is 23.

2

. . x4+ 3x =10

EXAMPLE 3 Find lim —
x—+2 x* —4

Step 1 This time the term inside the limit is undefined at x = 2. Taking x ~ 2
but x # 2, we have
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x*+3x—10 (x—2(x+5 x+5

x> —4  (x=Dx+2 x+2

x? 4+ 3x— 10 x+5 245 7

Step2 St—T—— = sf =" = —.

x* —4 x+2 242 4

Thus lim (" +3x’1°)

x-2 x‘—4

o {@x)+3
EXAMPLE 4 Findlim (=222 ©
P o\G - 1

Step 1 Taking x ~ 0 but x # 0,
(2/x)+3 2+ 3x
B/x)—-1 3—x’
(2/x)+ 3 —st2+3x 2
B/x)—1/ “\3-—x

3
Thus the limit exists and equals 2.

. . x—3
EXAMPLE 5 Find lim ‘/— )
x29 X —

Step 2 st(

Step 1 Taking x & 9 and x # 9,
Jx=3 (Sx=IdSx+3) x—9 o
x=9 T x-9(/x+3) G-9/x+3) Ji+3

\/E—s)zst( 1 )= 1ot

x =9 Jx+3 Jo+3 6

so the limit exists and is &.

Step 2 st(

Our rules for standard parts in Chapter 1 lead at once to rules for limits.
We list these rules in Table 3.3.1. The limit rules can be applied whenever the two
limits lim f(x) and lim g(x) exist.

Table 3.3.1
—

Standard Part Rule Limit Rule
st(kb) = k st(b), k real li_l}’lkf x) = kli_rp fx)
st(a + b) = st(a) + st(b) ligl (f&x) + gx) = li_rp fx) + li-l}’l 2(x)
st(ab) = st(a) - st(b) : lim (f()g(x)) = 1i£nf () 1i§1g(x)
st(a/b) = st(a)/st(b), il b # 0 lxl_rgz (F()/glx) = Ef}f (x)/iiff g(x), if limg(x) # 0
st(/a) = st(a),ifa > 0 lim 7/ f (x) = /lim f () if lim f () > 0
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EXAMPLE 6 Find lim (x? — 2x)./(x* — )/(x — 1).
x— 1

All the limits involved exist, so we can use the limit rules to compute the
limit as follows. First we find the limit of the expression inside the radical.
x? -1 (x — D(x + 1)

lim = lim = lim(x + 1) = 2.
x=+1 X — x—1 x—1 x=1

Now we find the answer to the original problem.

lim (x? — 2x)/(x* — D)/(x — 1) = lim (x*> — 2x)/1im (x* — 1)/(x — 1)

x=1 x—1 x—1
=(1-22=-2

There are three ways in which a limit lim f(x) can fail to exist:

(1) f(x)is undefined for some x which is infinitely close but not equal to c.
(2) f(x) is infinite for some x which is infinitely close but not equal to c.

(3) The standard part of f(x) is different for different numbers x which are
infinitely close but not equal to c.

EXAMPLE 7 lim \/;c does not exist because \/; isundefined for negative infinitesimal

x=0

x. (See Figure 3.3.3(a).)

EXAMPLE 8 lim I/x? does not exist because 1/x? is infinite for infinitesimal x # 0.
x—=0

(See Figure 3.3.3(b))
y Y y
o M —
X X L X
@ y=vx ®) y=3r © =7
Figure 3.3.3

EXAMPLE 9 lim x/|x| does not exist because
x—0

o x\ 1 if x >0,
x|  |-1 ifx<0O.

(See Figure 3.1.3(c).)

In the above examples the function behaves differently on one side of the
point 0 than it does on the other side. For such functions, one-sided limits are useful.
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We say that
lim f(x) =L

x—ct
if whenever x > cand x = ¢, f(x) = L.

lim f(x) = L
means that whenever x < ¢ and x & ¢, f(x) = L. These two kinds of limits, shown
in Figure 3.3.4, are called the limiz from the right and the limit from the left.

fx)

lim f(x) =M

x—ct

lim f(x) =L

x—c”

Figure 3.3.4 One-sided limits.

THEOREM 2
A limit has value L,
lim f(c) = L,

X—>c

if and only if both one-sided limits exist and are equal to L,
lim» f(x) = lim f(x) = L.

PROOF If lim,_,, f(x) = L, it follows at once from the definition that both one-sided
limits are L.
Assume that both one-sided limits are equal to L. Let x =~ ¢, but x # c.
Then either x < ¢ or x > ¢. If x < ¢, then because lim,,.- f(x) = L, we
have f(x) &~ L. On the other hand if x > ¢, then lim,_.. f(x) = L gives
f(x) & L. Thus in either case f(x) =~ L. This shows that lim__,_ f(x) = L.

When a limit does not exist, it is possible that neither one-sided limit exists,
that just one of them exists, or that both one-sided limits exist but have different

values.

EXAMPLE 7 (Continued) lim ./x =0, and lim \/; does not exist.

x—=0* x—=>0-

EXAMPLE 8 (Continued) Neither lim 1/x? nor lim 1/x% exists.
x—0t

x>0~
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EXAMPLE 9 (Continued)

PROBLEMS FOR SECTION 3.3

lim x/|x| =
x>0t

lim x/|x| = —1.
x=0-

In each problem below, determine whether or not the limit exists. When the limit exists, find its
value. With a calculator, compute some values as x approaches its limit, and see what happens.

1 lim 32 + ¢+ 1
(4
3 l_im c—x
3 .11—~rr21x2—4
7 fim V8=
r—8 U*g
3y —
9 1im\/a !
u—=1l U 1
11 llm,/1+1y—m
13 lim Yl
y»-1y+1
15 lim X1
1t ox — |
——
17 11m NEESVERIE
19 llm x/1+ x2
12t
lim—— =
2 (03 — 4r 1

(\c + Ax)? — x?

3 A,\—¢0 Ax
‘/ A
25 lim Vit A= >0
L (x = Ax)? — X3

27 Al:zno Ax

29 lim (1 + Ax)® — (1 + Ax)|
Ax—0" Al‘

31 lim L= U+ Ax7
Ax—0- Ax

CONTINUITY

2

10

12

14

16

18
20

22

26

28

30

Ax? + 2Ax + 1
Ax—-m~1 Ax + 1

lim

y=0 p°
x? —

lim

-2 x—2

i Jx+1 -1

x—=0 X
-2t 4 4

1 1
A
I x+ Ax X (x # 0)
x=0 Ax
Lt 4+ A — s
e 020
X + Ax X
im x+Ax+1 x+1 x# 1)
Ax~0 AX
3 _
lim (1 + Ax) {1 + Ax)|
Ax—0* Ax

Intuitively, a curve y = f(x) is continuous if it forms an unbroken line, that is, when-
ever x; is close to x5, f(x) is close to f(x,). To make this intuitive idea into a mathe-
matical definition, we substitute “infinitely close” for **close.”
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DEFINITION

[ is said to be continuous at a point c if
(1) fis defined at c;

(ii) whenever x is infinitely close to ¢, f(x) is infinitely close to f(c).

If f is not continuous at ¢ it is said to be discontinuous at c.

When f is continuous at c, the entire part of the curve where x = ¢ will be
visible in an infinitesimal microscope aimed at the point {c, f(c)), as shown in Figure
3.4.1(a). But if f is discontinuous at ¢, some values of f(x) where x = ¢ will either be
undefined or outside the range of vision of the microscope, as in Figure 3.4.1(b).

Continuity, like the derivative, can be expressed in terms of limits. Again the
proof is immediate from the definitions.

)

f(©) /\/\An VA
N %

(a) f continuous at ¢

2
b

fx)

f(c)

Figure 3.4.1 (b} f discontinuous at ¢

THEOREM 1

[ is continuous at ¢ if and only if

lim f(x) = f(c).
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As an application, we have a set of rules for combining continuous functions.
They can be proved either by the corresponding rules for limits (Table 3.3.1 in Section
3.3) or by computing standard parts.

THEOREM 2

Suppose f and g are continuous at c.

(i) For any constant k, the function k « f(x) is continuous at c.

(i)  f(x) + g(x) is continuous at c.
(i)  f(x)»g(x) Is continuous ar c.

(iv) If g(c) # 0, then f(x)/g(x) is continuous at c.

(v) If f(c)is positive and n is an integer, then m is continuous at c.

By repeated use of Theorem 2, we see that all of the following functions are
continuous at c.

Every polynomial function.

Every rational function f(x)/g(x), where f(x) and g(x) are polynomials and

glc) # 0.

The functions f(x) = x', r rational and x positive,

Sometimes a function f(x) will be undefined at a point x = ¢ while the limit

L =lim f(x)

x=c

exists. When this happens, we can make the function continuous at ¢ by defining

fle) = L.

2
-2
EXAMPLE 1 Let f(x) = %

Atany point ¢ # 1, fis continuous. But f(1) is undefined so f'is discontinuous
at 1. However,

X +x—-2 . (x=Dx+2
Iim—mMmM— = lim—F—~ =
x—1 x—1 x=1 x—1

We can make [ continuous at 1 by defining
x4+ x—-2

flx) = x—1
3 if x = 1.

if x # 1,

(See Figure 3.4.2)

In terms of a dependent variable y = f(x), the definition of continuity takes
the following form, where Ay = f(c + Ax) — f(c).
y is continuous at x = c if :

(i) yisdefined at x = c.
(i) Whenever Ax is infinitesimal, Ay is infinitesimal.



fx)

/

)=

/ f(1) undefined
flx

x-2
I

Figure 3.4.2

3.4 CONTINUITY 127

f(x)
f)=3
f(x)___{"—z_j_%z ifx#1
3 ifx=1
T p

To summarize, given a function y = f(x) defined at x = ¢, all the statements

below are equivalent.

(1)

(2) Whenever x = ¢, f(x)
3)

(4 lim,.. f(x)

&)

(6)

Whenever st(x) = ¢, st{ f(x))
= f(e).

y is continuous at x = c.
Whenever Ax is infinitesimal, Ay is infinitesimal.

£ is continuous at c.

= f(c).
= f(c)

Our next theorem is that differentiability implies continuity. That is, the
set of differentiable functions at c is a subset of the set of continuous functions at ¢.

(See Figure 3.4.3)

Figure 3.4.3

All real functions

Functions
continuous at ¢

Functions
differentiable
ate

THEOREM 3

If f is differentiable at c then f is continuous at c.

PROOF Let y = f(x), and let Ax be a nonzero infinitesimal. Then Ay/Ax is infinitely
close to f'(c) and is therefore finite. Thus Ay = Ax(Ay/Ax) is the product
of an infinitesimal and a finite number, so Ay is infinitesimal.

For example, the transcendental functions sin x, cos x, e* are continuous
for all x, and In x is continuous for x > 0. Theorem 3 can be used to show that com-
binations of these functions are continuous.



128 3 CONTINUOUS FUNCTIONS

EXAMPLE 2 Find as large a set as you can on which the function

1) = sin );1;18(4—1— 1)

is continuous.

sin x is continuous for all x. In(x + 1) is continuous whenever x + 1 > 0,
that is, x > — 1. The numerator sin x1n (x + 1) is thus continuous whenever
x > —1. The denominator x* — 4 is continuous for all x but is zero when
x = =+ 2. Therefore f(x) is continuous whenever x > —1 and x # 2.

The next two examples give functions which are continuous but not differ-
entiable at a point c.

EXAMPLE 3 The function y = x!/3 is continuous but not differentiable at x = 0.

(See Figure 3.4.4(a).) We have seen before that it is not differentiable at x = 0.
It is continuous because if Ax is infinitesimal then so is

Ay = (0 + Ax)? — 013 = (Ax)!/3,

EXAMPLE 4 The absolute value function y = | x|is continuous but not differentiable
at the point x = 0. (See Figure 3.4.4(b).)

We have already shown that the derivative does not exist at x = 0. To see
that the function is continuous, we note that for any infinitesimal Ax,

Ay =10 + Ax] — [0] = |Ax]

and thus Ay is infinitesimal.

/_/0 ¥ *

y=x y=|x|

Figure 3.4.4 (a) (b)

The path of a bouncing ball is a series of parabolas shown in Figure 3.4.5.
The curve is continuous everywhere. At the points a;, a,, as, ... where the ball
bounces, the curve is continuous but not differentiable. At other points, the curve is
both continuous and differentiable.

In the classical kinetic theory of gases, a gas molecule is assumed to be
moving at a constant velocity in a straight line except at the instant of time when it
collides with another molecule or the wall of the container. Its path is then a broken
line in space, as in Figure 3.4.6.
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0 a; as as as as

Figure 3.4.5 Path of Bouncing Ball

Figure 3.4.6

The position in three dimensional space at time ¢ can be represented by three
functions

x=f, y=g@, z=h

All three functions, f, g, and s are continuous for all values of ¢. At the time ¢ of a
collision, at least one and usually all three derivatives dx/dt, dy/dt, dz/dt will be
undefined because the speed or direction of the molecule changes abruptly. At any
other time ¢, when no collision is taking place, all three derivatives dx/dt, dy/ds,
dz/dt will exist.

The functions we shall ordinarily encounter in this book will be defined
and have a derivative at all but perhaps a finite number of points of an interval. The
graph of such a function will be a smooth curve where the derivative exists. At points
where the curve has a sharp corner (like 0 in |x|) or a vertical tangent line (like 0
in x'/?), the function is continuous but not differentiable (see Figure 3.4.7). At points
where the function is undefined or there is a jump, or the value approaches infinity
or oscillates wildly, the function is discontinuous (see Figure 3.4.8).

Sf(x)

N

! 1
—& &

|

1

1

t

|

|

i

|

1 1
- H

Figure 3.4.7 Points where fis continuous but nondifferentiable

129
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f(x)

!
| (
i |
| |
d

— | )

-/ x

Py

a

/

Figure 3.4.8 Points where f is discontinuous

A

The next theorem is similar to the Chain Rule for derivatives.

THEOREM 4

If f'is continuous at ¢ and G is continuous at f(c), then the function
g(x) = G(f(x))

is also continuous at ¢. That is, a continuous function of a continuous function
is continuous.

PROOF Let x be infinitely close to but not equal to ¢. Then
st(g(x)) = st(G(f (X)) = G(st(f(x)) = G(f(c)) = g(c).

For example, the following functions are continuous:

fx)y=/x*+1, all x

g(x) = |x* — x|, all x
hx) =1+ /X7, x>0
Jx) = e, all x
k(x) = In|x|, all x # 0

Here are two examples illustrating two types of discontinuities.

x* —3x + 4
4(x — D(x — 2)
is continuous at every real point except x = 1 and x = 2. At these two points
g(x) is undefined (Figure 3.4.9).

EXAMPLE 5 The function g(x) =

EXAMPLE 6 The greatest integer function [x], shown in Figure 3.4.10, is defined by
[x] = the greatest integer n such that n < x.

Thus [x]=0if0<x <], [x]=1if1<x<2 [x]=2if2<x<3,
and so on. For negative x, we have [x] = —1if -1 <x <0, [x]= -2
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x
|
|
|
_ x2-3x+4
/\ Y =i -D
Figure 3.4.9
y
—
-—
-—
| ] l ] !
T 1T 0 1 T T X
-2 -1 1 2 3
- |
-—
y =[x]
Figure 3.4.10

if —2 < x < —1, and so on. For example,
[7.362] =17, [n] =3, [—243] = -3
For each integer n, [n] is equal to n. The function [x] is continuous when

x is not an integer but is discontinuous when x is an integer n. At an integer #,
both one-sided limits exist but are different,

lim f(x) =n — 1, 1im+f(x)=n.

The graph of [x] looks like a staircase. It has a step, or jump discontinuity,
at each integer n. The function [x] will be useful in the last section of this
chapter. Some hand calculators have a key for either the greatest integer
function or for the similar function that gives [x] for positive x and [x] + 1
for negative x. i

Functions which are “continuous on an interval” will play an important
role in this chapter. Intervals were discussed in Section 1.1. Recall that closed intervals

have the form
la, b],
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open intervals have one of the forms
(ab), (a, o), (—xb) (-0, x)
and half-open intervals have one of the forms
(a, b), (a, b], [a, o), (— oo, b).

In these intervals, a is called the lower endpoint and b, the upper endpoint. The symbol
—oc indicates that there is no lower endpoint, while oo indicates that there is no
upper endpoint.
DEFINITION

We say that f is continuous on an open interval I if f is continuous at every

point ¢ in I. If in addition f has a derivative at every point of I, we say that {
is differentiable on I.

To define what is meant by a function continuous on a closed interval, we
introduce the notions of continuous from the right and continuous from the left,
using one-sided limits.

DEFINITION

fis continuous from the right at ¢ if lim f(x) = f(c).

[is continuous from the left at c if lim f(x) = f(c).

EXAMPLE 6 (Continued) The greatest integer function f(x) = [x] is continuous
from the right but not from the left at each integer n because

[#] =n, lim[x] =n, lim[x] =n— 1.

x—ont yon-

It is easy to check that f'is continuous at ¢ if and only if f is continuous from
both the right and left at ¢.

DEFINITION
[ is said to be continnous on the closed interval [a, b] if [ is continuous at each

point ¢ where a < ¢ < b, continuous from the right at a, and continuous from
the left at b,

Figure 3.4.11 shows a function f continuous on [a, b].

EXAMPLE 7 The semicircle

y= JT=,

shown in Figure 3.4.12, is continuous on the closed interval [ —1, 1]. It is
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/
@ b x
Figure 3.4.11 fis continuous on the interval (a, b]
¥y
- ’ ;
Figure 3.4.12 y=+1-x2

differentiable on the open interval (— 1, 1). To see that it is continuous from
the right at x = —1, let Ax be positive infinitesimal. Then

y=J/1—-(=1)*=0

y+Ay=./1 — (=1 +Ax)* = /1 = (1 — 2Ax + Ax?)

= J2Ax — Ax? = /(2 — Ax) Ax.

Thus

Ay = /(2 — Ax) Ax.

The number inside the radical is positive infinitesimal, so Ay is infinitesimal.
This shows that the function is continuous from the right at x = — 1. Similar
reasoning shows it is continuous from the left at x = 1.

PROBLEMS FOR SECTION 3.4

In Problems 1-17, find the set of all points at which the function is continuous.

1 fx)=3x*+5x+4
3 flx)y=Jx+2
5 fx)=Ix-2[+1

5 2
6 f(x)—x+3
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11

13

15
17
18
19
20
21
22
23

26
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X x4+ 2
0= s T e
f(x) = /4 — x? 10 flx)y=./x*—4

1 1 1
IO = i+ ) 2 s=ir
g(x)=x—‘—2+x_3 14 gx) = /x* — x
x—3 x-2

glx) = Hxt — x° 16 fi)=Jt72 -1

fo= =1

Show that f(x) = \ﬂ is continuous from the right at x = 0.

Show that f(x) = \/ﬁ is continuous from the left at x = 1.

Show that f(x) = \/1 — |x] is continuous on the closed interval [—1, 1].

Show that f(x) = \ﬁc + \/m is continuous on the closed interval [0, 2].

Show that f(x) = \/9—7 is continuous on the closed interval [ — 3, 3].

Show that f(x) = \/;fj is continuous on the half-open intervals (—oc, —3] and
[3, o).

Suppose the function f(x) is continuous on the closed interval {a, b]. Show that there

isa function g(x) which is continuous on the whole real line and has the value g(x) = f(x)
for x in [q, b).

Suppose lim, ., f(x) = L. Prove that the function g(x), defined by g(x) = f(x) for
x % cand g(x) = L for x = ¢, is continuous at c.

In the curve y = f(x) illustrated below, identify the points x = ¢ where each of the
following happens:

(a) fis discontinuous at x = ¢

(b) fis continuous but not differentiable at x = ¢.

} vl

3.6 MAXIMA AND MINIMA

Let us assume throughout this section that fis a real function whose domain is an
interval I, and furthermore that f is continuous on I. A problem that often arises is
that of finding the point ¢ where f(c) has its largest value, and also the point ¢ where
f(c) has its smallest value. The derivative turns out to be very useful in this problem.
We begin by defining the concepts of maximum and minimum.
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DEFINITION

Let ¢ be a real number in the domain I of f.

(1) f has a maximum at ¢ if f(c) > f(x) for all real numbers x in I. In this
case f(c) is called the maximum value of f.

(i) [ has a minimum at c if f(c) < f(x) for all real numbers x in I. f(c) is then
called the minimum value of f.

When we look at the graph of a continuous function f on I, the maximum
will appear as the highest peak and the minimum as the lowest valley (Figure 3.5.1).

y

max

min

F-—m-

Figure 3.5.1 Maximum and Minimum

In general, all of the following possibilities can arise:

f has no maximum in its domain I.
[ has a maximum at exactly one point in I.
[ has a maximum at several different points in I.

However even if f has a maximum at several different points, /" can have only one
maximum value. Because if f has a maximum at ¢; and also at ¢,, then f(¢;) = f(c,)
and f(c,;) = f(cy), and therefore f(c,) and f(c,) are equal.

EXAMPLE 1 Each of the following functions, graphed in Figure 3.5.2, have no
maximum and no minimum:

(@) f(x)=1/x, 0 < x.
b fx)=x% 0O0<x<l
() f(x)=2x+ 3.

fx) fx) f(x)///

A
/

@ fxy=1,0<x (b) fx)=x%0<x<1 © fx)=2x+3

=

[=)

_—
®

Figure 3.5.2 No Maximum or Minimum
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EXAMPLE 2 The function f(x) = x? + 1 has no maximum. But f has a minimum at
x = 0 with value 1, because for x # 0, we always have x* > 0,x* + 1 > [.

The graph is shown in Figure 3.5.3.

Jx)

fx)=x2+1

min (0, 1)

Figure 3.5.3

The use of the derivative in finding maxima and minima is based on the
Critical Point Theorem. It shows that the maxima and minima of a function can
only occur at certain points, called critical points. The theorem will be stated now,
and its proof is given at the end of this section.

CRITICAL POINT THEOREM

Let [ be continuous on its domain 1. Suppose that ¢ is a point in I and [ has
either a maximum or a minimum at c. Then one of the following three things
must happen:

(i) cisanendpoint of I,
(i) f'(c) is undefined,
(ii)  f'(c) = 0.

We shall say that ¢ is a critical point of fif either (i), (ii), or (iii) happens. The
three types of critical points are shown in Figure 3.5.4. When [ is an open interval,
(i) cannot arise since the endpoints are not elements of I. But when I is a closed

Case (i) Case (ii) Case (iii)
Figure 3.5.4 Critical Point Theorem
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interval, the two endpoints of I will always be among the critical points. Geometrically
the theorem says that if f hasa maximum or minimum at ¢, then either ¢ is an endpoint
of the curve, or there is a sharp corner at ¢, or the curve has a horizontal slope at c.
Thus at a maximum there is either an endpoint, a sharp peak, or a horizontal summit.

The Critical Point Theorem has some important applications to economics.
Here is one example. Some other examples are described in the problem set.

EXAMPLE 3 Suppose a quantity x of a commodity can be produced at a total cost
C(x) and sold for a total revenue of R(x), 0 < x < oo. The profit is defined
as the difference between the revenue and the cost,

P(x) = R(x) ~ C(x).

Show that if the profit has a maximum at x;, then the marginal cost is equal
to the marginal revenue at x,,

R'(x) = C'(xo)-

In this problem it is understood that R(x) and C(x) are differentiable
functions, so that the marginal cost and marginal revenue always exist.
Therefore P'(x) exists and

P'(x) = R'(x) — C'(x).

Assume P(x) has a maximum at x,. Since (0, o) has no endpoints and P'(x,)
exists, the Critical Point Theorem shows that P'(xy) = 0. Thus

P'(xq) = R'(xg) — C(xg) = 0
and R(xo) = C'lxo)

DEFINITION

An interior point of an interval I is an element of 1 which is not an endpoint of I.

For example, if I is an open interval, then every point of I is an interior point
of I. But if I is a closed interval [qa, b], then the set of all interior points of I is the
open interval (q, b) (Figure 3.5.5).

a b

/ \
g .
endpoint

endpoint interior points
Figure 3.5.5

An interior point of I which is a critical point of f is called an interior critical
point. There are a number of tests to determine whether or not f"has a maximum at a
given interior critical point. Here are two such tests. In both tests we assume that f'is
continuous on its domain I.

DIRECT TEST

Suppose c is the only interior critical point of f, and u, v are points in I with
u<c<ou.
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(1) If fle) > f(u) and f(c) > f(v), then [ has a maximum at c and nowhere
else.
(it)y If f(c) < f(u) and f(c) < f(v), then [ has a minimum at ¢ and nowhere
else.
(i) Otherwise, [ has neither a maximum nor g minimum at c.

The three cases in the Direct Test are shown in Figure 3.5.6. The advantage
of the Direct Test is that one can determine whether ' has a maximum or minimum
at ¢ by computing only the three values f (), f(v), and f(c) instead of computing all
values of f(x).

/T\\?\,_/r

|
|
1
|
|
|
[l

T |
[ | I
| i |
| I |
! | |
[ | L
C v c

[ S ——

|
|
|
|
|
|
|
4 u

=

(i) max (i) min (iii) neither
Figure 3.5.6

PROOF OF THE D/RECT TEST We must prove that if two points of [ are on the
same side of ¢, their values are on the same side of f(¢). Suppose, for instance,
that u; < u, < ¢ (Figure 3.5.7). On the closed interval [u,, ¢] the only

i)
Uy

U, Ho

Figure 3.5.7

critical points are the endpoints. Thus when we restrict f to this interval, it
has a maximum at one endpoint and a minimum at the other. If the maximum
is at ¢, then f(u;) and f(u,) are both less than f(c); if the minimum is at ¢,
then f(u,) and f(u,) are both greater than f(c). A similar proof works when
c< U <y,

SECOND DERIVATIVE TEST
Suppose ¢ is the only interior critical point of f and that [’(¢) = 0.

(1) Iff"(c) <O, f has a maximum at ¢ and nowhere else.
(i) If f"(c) > 0, f has a minimum at ¢ and nowhere else.

We omit the proof and give a simple intuitive argument instead. (See Figure
3.5.8.) Since f'(c) = 0, the curve is horizontal at ¢. If /”(¢) is negative the slope is
decreasing. This means that the curve climbs up until it levels off at ¢ and then falls
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down, so it has a maximum at ¢. On the other hand, if f”(c) is positive, the slope is
increasing, so the curve falls down until it reaches a minimum at ¢ and then climbs up.
This argument makes it easy to remember which way the inequalities go in the

test.
The Second Derivative Test fails when f“(c) = 0 and when f"(c) does not'

exist. When the Second Derivative Test fails any of the following things can still
happen:

(1) f hasa maximum at x = c.
(2) fhasa minimum at x = c.
(3) f has neither a maximum nor a minimum at x = ¢.

4

/\\i/

(i) f"(c)<0, max (i) f"(¢)>0, min

Figure 3.5.8

In most maximum and minimum problems, there is only one critical point
except for the endpoints of the interval. We develop a method for finding the maximum
and minimum in that case.

METHOD FOR FINDING MAXIMA AND MINIMA

When to use: f is continuous on its domain I, and f has exactly one interior
critical point.

Step 7 Differentiate f.
Step 2 Find the unique interior critical point ¢ of f.

Step 3 Test to see whether f has a maximum or minimum at ¢. The Direct Test or
the Second Derivative Test may be used.

This method can be applied to an open or half-open interval as well as a
closed interval. The Second Derivative Test is more convenient because it requires
only the single computation f"(c), while the Direct Test requires the three computa-
tions f(u), f(v), and f(c). However, the Direct Test always works while the Second

Derivative Test sometimes fails.
We illustrate the use of both tests in the examples.

EXAMPLE 4 Find the point on the line y = 2x + 3 which is at minimum distance
from the origin.
The distance is given by

z=./x%+ %
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and substituting 2x + 3 for y,

=P+ 20+ 3P = 5%+ 12x + 9.

This is defined on the whole real line.

dz [0x + 12 S5x +6
Step 7 —_— = P — - = .
dx 2. /5% + 12x + 9
Iz
Step 2 = Oonly when5x + 6 =0, orx = —% .
X
2 N
Step 3 ﬂ _ 5z — (5x —té)(dz/dx)l
dx? z©
At x = ~%, 5x 4+ 6 =0 and z > 0 so d?z/dx* = 5/z > 0. By the Second
Derivative Test, z has a minimum at x = —$.
CONCLUSION The distance is a minimum at x = —$, y =2x + 3 =2 The
minimum distance is z = \/x* + y? = \/%. This is shown in Figure 3.5.9.
y
0, 0) x
Figure 3.5.9

EXAMPLE 5 Find the minimum of f(x) = x® + 10x* + 2.
Step 1 f'(x) = 6x° + 40x3 = x3(6x? + 40).
Step 2 f'(x) = 0 only when x = 0.
Step 3 The Second Derivative Test fails, because
S(x) = 30x* + 120x2, S70) =0,
We use the Direct Test. Let u = —1,» = 1. Then
SO =2 f(=)=13  f()=13

Hence fhas a minimum at 0, as shown in Figure 3.5.10.

EXAMPLE 6 Find the maximum of f(x) = 1 — x%3.
Step 1 f'(x) = —($)x" 13,

Step 2 f'(x) is undefined at x = 0, and this the only critical point.
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max (0, 1)

min (0, 2)\_107

f(x)=x%+ 10x%+2 fx)=1—x2/3
Figure 3.5.10 Figure 3.5.11

Step 3 We use the Direct Test. Letu = —1,v = 1.
fO =1, f(-1)=0, f(I)=0.

Thus fhas a maximum at x = 0, as shown in Figure 3.5.11.

If f has more than one interior critical point, the maxima and minima
can sometimes be found by dividing the interval into two or more parts.

EXAMPLE 7 Find the maximum and minimum of f(x) = x/(x*> + 1).

(x* + 1) — 2x? 1 — x?
2+ 1D T (x4 DY
Step 2 f'(x) = 0, when x = —1 and x = 1. There are two interior critical points.
We divide the interval (— o0, o0) on which f is defined into the two sub-
intervals (— oo, 0] and [0, c0). On each of these subintervals, f has just one
interior critical point.

Step 1 f'(x)=

Step 3 We shall use the direct test for the subinterval (— oo, 0]. At the critical
point —1, we have f(—1) = —3. By direct computation, .we see that
f(=2) = —% and f(0) = 0. Both of these values are greater than —31. This
shows that the restriction of f to the subinterval (—co, 0] has a minimum
at x = —1. Moreover, f(x) is always >0 for x in the other subinterval
[0, oo). Therefore f has a minimum at —1 for the whole interval (— oo, c0).
In a similar way, we can show that fhas a maximum at x = 1.

CONCLUSION f has a minimum at x = —1 with value f(—1)= —4 and a
maximum at x = 1 with value f(1) = . (See Figure 3.5.12.)

The Critical Point Theorem can often be used to show that a curve has no
maximum or minimum on an open interval I = (a, b). The theorem shows that:

If y = f(x) has no critical points in (a, b), the curve has no maximum or
minimum on (a, b).
If y = f(x) has just one critical point x = ¢ in (a, b) and two points x, and
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f(x)

max (1, §)

. 1
min (~1, —3) flx) = —Z
Figure 3.5.12 +x?

X, are found where f(x,) < f(¢) < f(x5), then the curve has no maximum or minimum
on (a, b).

EXAMPLE 8 f(x) = x* — 1. Test for maxima and minima.

Step 1 ['(x) = 3x2

Step 2 f’'(x) = 0 only when x = 0.

Step 3 The Second Derivative Test fails, because f“(x) = 6x, "0y =0.
By direct computation, f(0) = —1, f(=1) = =2, f(y=0.
Therefore f has neither a minimum nor a maximum at x = 0.

CONCLUS/ON Since x = 0 is the only critical point of f and f doesn’t have a

maximum or minimum there, we conclude that f has no maximum and no
minimum as shown in Figure 3.5.13.

f(x)

(09 '—'1)

Figure 3.56.13

PROOF OF THE CRITICAL POINT THEOREM Assume that neither (i) nor (ii) holds;
that is, assume that ¢ is not an endpoint of  and f”(c) exists. We must show
that (iii) is true; ie., f'(c) = 0. We give the proof for the case that f has a
maximum at ¢. Let x = ¢, and let Ax > 0 be infinitesimal. Then
Sle+ Ax) < fle),  fle — Ax) < flo).
(See Figure 3.5.14.) Therefore
Jle + Ax) — f(e) <0 gf(C — Ax) —f(C).
Ax —Ax
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Figure 3.5.14 Proof of the Critical Point Theorem

Taking standard parts,

fle) = st(f(

¢+ Ax) — f(c)

fle — Ax) — f{¢)

<
Ax )_0’

and also, 0< st(

Therefore f'(c) = 0.

PROBLEMS FOR SECTION 3.5

In Problems 1-36, find the unique interior critical point and determine whether it is a maximum,

a minimum, or neither.

N = Y I

13
15
17

19
21
23

25

27
29
31
33

fxy=x?

fx)y=x*+2

fx)y=x>+2
fx)=3x>+2x—5

flx) = x*°

S@ =5, —l<x<l

fxy=x"+1
fO=x*—x"1, x<0
f)=x""—(x -3

0<x<3

fx)=./4—-x% —-2<x<2

y=sinx+x, 0<x<2n

x2

y=e"

1 T
y=——, —-<x<-
cosX 2 2

y = xe*

y=x—Inx, O0<x< oo

fG)=x—3|
f)=2—|x|

— ) = /).

2 fy=1-x2
4 f)=x*+3x*+5
6 f(x) = x> —3x2 4+ 3x
8 Fo)=2x—D*+(x—-1D*+6
10 fx)y=2—(x+1)"
12 = —
J&) x+1
14 F(x) =4 — x5
16 fO)=x*—x"Y x>0
18 fX)=x+x"1 0<x
20 fx)=@-x>)"", —2<x<2
22 y=sin’x, O<x<mn
24 y= ex> 1
26 y=In(sinx), O0<x<=m
28 y=xlnx, 0<x<
30 y=¢e —x
32 f)=3+|1—-x|
34 ) =2|x| —x
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35

37
38
39
40
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)= x+/1=x, 36 f)=x+/9-3x 0<x<3

0<x<1

Find the shortest distance between the line y = 1 — 4x and the origin.

Find the shortest distance between the curve y = 2/x and the origin.

Find the minimum of the curve f (x) = x™ — mx, x > 0, where m is an integer > 2.

Find the maximum of f (x) = x™ — mx, x < 0, where m is an odd integer > 2.

In Problems 41-44, find the maximum and minimum of the given curve.

41

43

. x ) Ix+4

./(X)=x2+4 42 .f(X)=;r_;—1
X ) x3

.f(x)=x4+1 44 ./(><)=‘c4_H

MAXIMA AND MINIMA—APPLICATIONS

Maximum and minimum problems arise in both the physical and social sciences.
We give three examples.

EXAMPLE 1

Step 7

Step 2

Step 3

A woman wishes to rent a house. If she lives x miles from her work,
her transportation cost will be ¢x dollars per year, while her rent will be
25¢/(x + 1) dollars per year. How far should she live from work to minimize
her rent and transportation expenses?

Let y be her expenses in dollars per year. Then

25¢
x4+ 1

y=cx+

The problem is to find the minimum value of y in the interval 0 < x < .

dy 25¢
— = = 5
dx (x + 1)?
To find x such that dy/dx = 0 we set dy/dx = 0 and solve for x.
25¢ 25¢
_’—:O’ = 3, b 12=25, A 1=+5.
x + 12 ‘=g XD xhi=x
Then x = 4 or x = —6. We reject x = — 6 because 0 < x. The only interior

critical point is x = 4.

We use the Direct Test.

Atx =0, y=c+0+ 250 + 1) = 25¢.
Atx =4, y=4c + 25¢/(4 + 1) = 9c.
Atx =9, y=9+ 25¢/9 + 1) = 11.5¢.

CONCLUSION y has its minimum at x = 4 miles. So the woman should live four

miles from work. (See Figure 3.6.1.)



Figure 3.6.1

3.6 MAXIMA AND MINIMA—APPLICATIONS

15¢+

10¢ +
min
S5¢+

O fb——————_——

EXAMPLE 2 A farmer plans to use 1000 feet of fence to enclose a rectangular plot

Figure 3.6.2 X

Step 7
Step 2
Step 3

along the bank of a straight river. Find the dimensions which enclose the
maximum area.

Let x be the dimension of the side along the river, and y be the other
dimension, as in Figure 3.6.2. Call the area A.

No fencing is needed on the side of the plot bordering the river. The given
information is expressed by the following system of formulas.

A=xy, x+2y=1000, 0 < x < 1000.

The problem is to find the values of x and y at which A is maximum. In this
problem A is expressed in terms of two variables instead of one. However,
we can select x as the independent variable, and then both y and A are
functions of x. We find an equation for A as a function of x alone by
eliminating y.

1000 — x
x + 2y = 1000, y= —2—l
1000 — 1
A=xy:W=500x—§x2.

We then find the maximum of A4 in the closed interval 0 < x < 1000.
dA/dx = 500 — x.
dA/dx = 0 when x = 500. This is the unique interior critical point.

We use the Second Derivative Test: d*4/dx? = —1. Therefore A has a
maximum at the critical point x = 500.

CONELUSION The maximum area occurs when the plot has dimensions x = 500 ft

and y = (1000 — x)/2 = 250ft (Figure 3.6.3).
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A
125,000 | —=—=—=======>

&) 500 1000 x

Figure 3.6.3

EXAMPLE 3 Find the shape of the cylinder of maximum volume which can be
inscribed in a given sphere.

The shape of a right circular cylinder can be described by the ratio of the
radius of its base to its height. This ratio for the inscribed cylinder of maximum
volume should be a number which does not depend on the radius of the sphere.
For example, we should get the same shape whether the radius of the sphere
is given in inches or centimeters.

Let r be the radius of the given sphere, x the radius of the base of the cylinder,

h its height, and V its volume. First, we draw a sketch of the problem in
Figure 3.6.4.

[SIE

h r

ST

- -

~—— _

Figure 3.6.4 i

From the sketch we can read off the formulas
V=nx?h x*+@Eh)?=r? 0<x<r

r is a constant. We select x as the independent variable, while h and V are
functions of x. To solve the problem we shall find the value of x where Vis a
maximum and then compute the ratio x/h at this point to describe the shape
of the cylinder. The answer x/h should not depend on the constant ». We
give two methods of solution.

FIRST SOLUTION Express V as a function of x by eliminating .
x4 (Gh) = r?,
h=2/r— x2
V = nx*h = 2ax>/r?* — x%
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The problem is to find the maximum of V in the interval 0 < x < r.

Step 1 —_4nx1/r — x? R i (x <.

Step 2 There is one critical point at x = r, where dV/dx does not exist. We set
dV/dx = 0 and solve for x to find the other critical points.

4nx —x? - \/— =0, 4nx(r® — x?) - 2ax3 =0,
r? —x

2TCX(2T2 - 3X2) = 0, x=0 or x= ir\/%‘
We reject x = —r\/% because 0 < x < r. The only interior critical point is
x =/}
Step 3 We use the Direct Test.
Atx=0, V=0

43

G

Atx=r/%, V=
Atx=r, V=0

CONCLUSION The max1mum of Visat x = rf (see Figure 3.6.5). At that point,

h=2/r—x*= 21/\[ Then the ratio of x to 4 is
x/h =1//2.

Notice that, as we expected, this number does not depend on r.

v max

;

I

I

|

|

I

=

|

I
o r/2/3 r x

Figure 3.6.5

SECOND SOLUTION Instead of eliminating h and expressing V as a function of x,
we shall use the equations in their original form and find the critical points
. by implicit differentiation.
Step 1 V= nxth, dV/dx = 2nxh + nx*dh/dx.
We find dh/dx by implicit differentiation.

dh dh 4x
2 12 _ 2 pald
x* + (Zh) e, 2x + 2hd 9 dx h ’ (h # 0)
av 4x 4nx3
Then yrie 2nxh + ©x (—7) = 2nxh — P (h # Q).

Step 2 When h = 0 we have x = r, which is an endpoint. When h # 0 we set
dV/dx = 0 and solve for x.
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2nxh — 4nx3/h = 0, xh — 2x3/h = 0,
xh? = 2x3, x=0 or x= ih/ﬁ.

We reject x = —h/\/E because x and h > 0. x = 0 is an endpoint. Thus
x = h/\/2 is the unique interior critical point.

We use the Direct Test. At x=0, V =0. At x = h/\/i, V = nh*/2. At
x=rV=N0.

CONCLUSION The maximum of Vis at x = h/ﬁ. At that point the ratio of x to

his x/h = 1/\/6.

The second method of solution may be better in a problem where it is hard

or impossible to find explicit equations for the dependent variables (like h and V) as
functions of the independent variable.

PROBLEMS FOR SECTION 3.6

1

SN U kR W

10
11

Split 20 into the sum of two numbers x > 0 and y > 0 such that the product of x and
y? is 2 maximum.,

Find two numbers x > O and y > 0 such that x + y = 8 and x% + y? is a minimum.
Find two numbers x > ! and y > [ such that xy = 50 and 2x + y is a maximum.
Find the rectangle with perimeter 8 which has maximum area.

Find the maximum value of x*y if x and y belong to [0, 1Jand x + y = 1.

A rectangular box which is open at the top can be made from a 10 by 12 inch piece of
metal by cutting a square from each corner and bending up the sides. Find the dimen-
sions of the box with greatest volume.

A poster of total area 400 sq in. is to have a margin of 4 in. at the top and bottom and
3in. at each side. Find the dimensions which give the largest printed area.

A man can travel 5 mph along the path AB and 3 mph off the path as shown in the
figure. Find the quickest route APC from the point A to the point C.

P~
A 10 mi. B

Find the dimensions of the right triangle of maximum area whose hypotenuse has
length one.

Find the dimensions of the isosceles triangle of maximum area which has perimeter 3.

Find the five-sided figure of maximum area which has the shape of a square topped by
an isosceles triangle, and such that the sum of the height of the figure and the perimeter
of the square is 20 ft.
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13
14

15
16
17

18

19

20

21
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A wire of length L is to be divided into two parts; one part will be bent into a square and
the other into a circle. How should the wire be divided to make the sum of the areas of the
square and circle as large as possible? As small as possible?

Find the area of the largest rectangle which can be inscribed in a semicircle of radius r.

Find the dimensions of the rectangle of maximum area which can be inscribed in an
equilateral triangle as shown in the figure.

11—

Find the shape of the right circular cylinder of maximum volume which can be inscribed
in a right circular cone of height 3 and base of radius 1.

Find the shape of the right circular cone of maximum volume which can be inscribed
in a given sphere.

Find the shape of the cylinder of maximum volume such that the sum of the height and
the circumference of the base is equal to 4.

Find the shape of the largest trapezoid which can be inscribed in a semicircle as shown

in the figure.

If a farmer plants x units of wheat in his field, 0 < x < 100, the yield will be 10x — x%/10
units. How much wheat should he plant for the maximum yield?

In Problem 19 above, it costs the farmer $100 for each unit of wheat he plants, and he is
able to sell each unit he harvests for $50. How much should he plant to maximize his
profit?

A professional football team has a stadium which seats 60,000. It is found that x tickets
can be sold at a price of p = 10 — x/10,000 dollars per ticket. Find the values of x and p
at which the total money received will be a maximum.
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22

23

25
26
27

28

29

30

31

32

33

34

35

37

38

39
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In Problem 21 a tax of 31 per ticket is added onto the price. Find x and p so that the
total revenue after taxes is a maximum.

A store can buy up to 300 seconds of advertising time daily on the radio at the rate of
$2/sec for the first 100 sec, and $1/sec thereafter. x seconds on the radio increases daily
sales by 32\/; dollars. How many seconds on the radio will yield the maximum profit?

Work Problem 23 if the cost of advertising time is $1/sec for the first 100 sec and $2/sec
thereafter.

Find the real number which most exceeds its square.
Find the rectangle of area 9 which has the smallest perimeter.

Find the right triangle of smallest area in which a 1 by 2 rectangle can be inscribed as
shown in the figure.

A farmer wishes to enclose 10,000 sq ft of land along a river by three sides of fence as
shown in the figure. Find the dimensions which require the minimum length of fence.

Find the shortest distance between the line y = 1 — 4x and the origin.
Find the shortest distance between the curve y = 2/x and the origin.

A warehouse is to be built in the shape of a rectangular solid with a square base. The cost
of the roof per unit area is three times the cost of the walls. Find the shape which will
enclose the maximum volume for a given cost.

A rectangular box with volume 1 cu ft is to be made with a square base and no top. Find
the dimensions which require the smallest amount of material.

Find the dimensions of the right circular cylinder of volume 1 cu ft which has the smallest
surface area (top plus bottom plus sides).

Find the dimensions of the right circular cone of smallest volume which can be circum-
scribed about a sphere of radius .

Given two real numbers a and b, find x such that (x — a)*> + (x — b)? is a minimum.

The area of a sector of a circle with radius r and central angle 0 is A = 1r?6, and its arc
has length s = rf. Find r and 8 so that 0 < 8 < 27, the sector has area 1, and the perim-
eter is 2 minimum,

Show that among all right circular cylinders of volume 1 cu ft which are open at both
ends, there is no maximum or minimum surface area.

The population of a country at time ¢ = 0 is 50 million and is increasing at the rate of
one million people per year. The national income at time ¢ is (20,000 + 2) million
dollars per year. At what time ¢ > 0 is the per capita income (= national income =
population) a minimum?

A man estimates that he can paint his house in x hours of his spare time if he buys
equipment costing 200 + 2000/x? dollars, and that his spare time is worth $2/hr. How
many hours should he take?
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40 An artisan can produce x items at a total cost of 100 + 5x dollars and sell x items at a
price of 10 — x/100 dollars per item. Find the value of x which gives the maximum
profit.

41 A manufacturer can produce any number of buttons at a cost of two cents per button

and can sell x buttons at a price of 1000/\/; cents per button. How many buttons should
be produced for maximum profit?

3.7 DERIVATIVES AND CURVE SKETCHING

If we compute n values of f(x),

f(xl)a f(x2)a e af(xn)a

we obtain n points through which the curve y = f(x) passes. The first and second
derivatives tell us something about the shape of the curve in the intervals between
these points and permit a much more accurate plot of the curve. It is especially
helpful to know the signs of the first two derivatives.

When the first derivative is positive the curve is increasing from left to right,
and when the first derivative is negative the curve is decreasing from left to right.
When the first derivative is zero the curve is horizontal. These facts can be proved as a
theorem if we define exactly what is meant by increasing and decreasing (see Figures
3.7.1 and 3.7.2).

fx) fx)
! |
! !
} |
| |
| 1
{ i
I I
| osssoon] ! o]
4 1,7 e - 44 ,[ 4 -
Increasing, f'(x) >0 Decreasing, f'(x) <0
Figure 3.7.1
fo)
g *
1 I
I |
| |
I |
L ool
I/ ’ x
Figure 3.7.2 Constanton /, f'(x) =0
DEFINITION

A function f is said to be constant on an interval I if :
fx1) = f(x2) Jorall x,,x;in L.
[ is increasing on I if :

flxy) < f(xz) whenever x, < X, in L.
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[ is decreasing on 1 if :

J{xy) > f(xy) whenever x, < x,in L.

THEOREM 1
Suppose f is continuous on I and has a derivative at every interior point of 1.
() Iff'(x) = O for all interior points x of I, then f is constant on I.
(i) If f'(x) > 0 for all interior points x of 1, then [ is increasing on I.
(i) If f'(x) < O for all interior points x of 1, then f is decreasing on I.

A proof will be given in the next section.

EXAMPLE 1 The curve y = x*> 4+ x — 1 has derivative dy/dx = 3x*> + 1. The
derivative is always positive, so the curve is always increasing (Figure 3.7.3).

y=x+x-—1

Figure 3.7.3

Let us now turn to the second derivative. It is the rate of change of the slope
of the curve, so it has something to do with the way in which the curve is changing
direction. When the second derivative is positive, the slope is increasing, and we would
expect the curve to be concave upward, i.e., shaped like a U. When the second
derivative is negative the slope is decreasing, so the curve should be shaped like n
(see Figure 3.7.4).

A precise definition of concave upward or downward can be given by
comparing the curve with the chord (straight line segment) connecting two points on
the curve.

DEFINITION

Let f be defined on I. The curve y = f(x)is concave upward on 1 if jor any two
points X, < X, in I and any value of x between x, and x,, the curve at x is
below the chord which meets the curve at x| and x,.

The curve y = f(x) is concave downward on I if for any two points x| < x,inl
and any value of x between x and x,, the curve at x is above the chord which
meets the curve at x, and x, (see Figure 3.7.5).
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f(x) fx)
]
I
i
v\_/ |
: { [}
» | | |
I x /
concave upward concave downward
f'x)>0 fx <0
S fGo)
; i
! |
! [
i i
i |
| | 1 {
| ]
. i ]
I * I
concave upward concave downward
x>0 fx)y<0
Figure 3.7.4
y y
concave upward concave downward
Figure 3.7.5

The next theorem gives the geometric meaning of the sign of the second

derivative.

THEOREM 2

Suppose f is continuous on I and f has a second derivative at every interior

point of I.

(i) If f"(x) > O for all interior points x of I, then f is concave upward on I.
(i) Iff"(x) < O for all interior points x of I, then f is concave downward on 1.

We have already explained the intuitive reason for Theorem 2. The proof
is omitted. Theorem 1 tells what happens when f’ always has the same sign on an
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open interval I, while Theorem 2 does the same thing for f”. To use these results

we need another theorem that tells us that certain functions always have the same
sign on I.

THEOREM 3

Suppose g is continuous on I, and g(x) # 0 for all x in 1.

(i) If g(c) > O for at least one ¢ in I, then g(x) > O forall x in I
(if) If glc) < O for at least one c in I, then g(x) < O for all x in I.

The two cases are shown in Figure 3.7.6. We give the proofin the next section.

gx) glx)

/

|
|
4 s
SrrrA— \eoaaaes A

0 7 I' X 0 wx

Figure 3.7.6 g(x)>0 for all xin f g(x) <0 forall xin /

Let us show with some simple examples how we can use the first and second
derivatives in sketching curves. The three theorems above and the tests for minima
and maxima are all helpful.

EXAMPLE 1(Continued) )y = x> 4+ x — 1. We have

y 2
s,
dx X
d?y
p = 6x.

dy/dx is always positive, while d?y/dx? = 0 at x = 0. We make a table of
values for y and its first two derivatives at x = 0 and at a point to the right
and left side of 0.

dy d2y

. , =y 4
a ) dx  dx?
1 -3 4 —6
0 —1 1 0

1 1 4 6

With the aid of Theorems 1-3, we can draw the following conclusions:

(a) dy/dx > 0 and the curve is increasing for all x.
(b) d*y/dx* < Ofor x < 0; concave downward.
(c) d*y/dx* > Ofor x > 0; concave upward.

At the point x = 0, the curve changes from concave downward to concave
upward. This is called a point of inflection.
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To sketch the curve we first plot the three values of y shown in the table, then
sketch the slope at these points as shown in Figure 3.7.7, then fill in a smooth
curve, which is concave downward or upward as required.

y

+-2
L3
Figure 3.7.7 y=x%4+x—1
EXAMPLE 2 Sketch the curve y = 2x — x2.
%:2—2& ggz—z

We see that dy/dx = 0 when x = 1, a critical point. d®y/dx® is never zero
because it is constant. We make a table of values including the critical point
x = 1 and points to the right and left of it.

dy d2y

* d dx dx?
-1 -3 4 -2
0 0 2 -2
1 1 0 -2
2 -2 -2
3 -3 -4 -2

CONCLUSIONS

(@) dy/dx > 0for x < 1; increasing.

(b) dy/dx < 0for x > 1; decreasing.

() d?y/dx?® < 0 for all x; concave downward.
(d) dy/dx = 0,d%y/dx* < 0 at x = 1; maximum.

The curve is shown in Figure 3.7.8.

In general a curve y = f(x) may go up and down several times. To sketch it
we need to determine the intervals on which it is increasing or decreasing, and concave
upward or downward. Here are some things which may happen at the endpoints of
these intervals.
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Figure 3.7.8

3 CONTINUOUS FUNCTIONS

y=2x—x?

DEFINITION

Let ¢ be an interior point of 1.
[ has alocal maximum at ¢ if {(c) = f(x) for all x in some open interval (aq, by)
containing c.

[ has alocal minimum at ¢ if f(c) < f(x) for all x in some open interval (ag, by)
containing c. (The interval (a,, by) may be only a small subinterval of 1)

[ has a point of inflection at ¢ if [ changes from one direction of concavity to
the other at c.

These definitions are illustrated in Figure 3.7.9.

point of point of
inflection inflection
concave T concave T concave
upward downward upward
4
[+ dec. —+—— increasing ——»—— decreasing ——s«—incr. —»|
N
endpoint local min local max local min endpoint

max

Figure 3.7.9

We may now describe the steps in sketching a curve. We shall stick to the

simple case where f and its first two derivatives are continuous on a closed interval
[a, b], and either are never zero or are zero only finitely many times. (Curve plotting in
a more general situation is discussed in Chapter 5 on limits.)

Step 1
Step 2
Step 3

Compute dy/dx and d?y/dx2.
Find all points where dy/dx = 0 and all points where d?y/dx? = 0.
Pick a few points

0= X0, X1,X35.-.,%, =b

in the interval [a, b]. They should include both endpoints, all points where the
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first or second derivative is zero, and at least one point between any two
consecutive zeros of dy/dx or d*y/dx>.

Step 4 At each of the points x,, ..., Xx,, compute the values of y and dy/dx and
determine the sign of d%y/dx?. Make a table.

Step 5 From the table draw conclusions about where y is increasing or decreasing,
where y has a local maximum or minimum, where the curve is concave
upward or downward, and where it has a point of inflection. Use Theorems
1-3 of this section and the tests for maxima and minima.

Step 6 Plot the values of y and indicate slopes from the table. Then connect them
with a smooth curve which agrees with the conclusions of Step 5.

EXAMPLE 3 y=x%2-—x? -2<x<2

Step 1 dy/dx = 2x> — 2x. d*y/dx® = 6x* — 2.

Step 2 dyjdx =0atx = —1,0,1.

Step 3 d*y/dx* =Oatx + /3. -2, -1, —/%0,/5, 1,2

Step 4 dy d*y
X Y dx dx?

-2 4 -12  +

-1 -3 0+

VA T T NK) B

0 0 0 —

L -5 —46/3) 0

1 =3 0+

2 4 12 +

Step 5 We indicate the conclusions schematically in Figure 3.7.10.

sign of %
-2 —1 0 1 2
——————— O+t++++++0—- —————-O+++++++++
Conclusions: decreasing increasing decreasing increasing
local min local max local min
2
sign of %
-2 —/1/3 V1/3 2
+++++++++++0 - —— = — — — O++++++++++++
Conclusions: concave upward 4 concave downward concave upward
point of point of
inflection inflection

Figure 3.7.10
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Step 6

Figure 3.7.11

The curve is W-shaped, as shown in Figure 3.7.11.

(F%]
'
T

~
§
T

PROBLEMS FOR SECTION 3.7

Sketch each of the curves given below by the six-step process explained in the text. For each curve,
give a table showing all the critical points, local maxima and minima, intervals on which the curve
is increasing or decreasing, points of inflection, and intervals on which the curve is concave up-
ward or downward.

1 y =
3 y =
5 y =
7 y=
9 y=
10 y =
11 y =
12 y =
13 y =
14 )
15 y=
16 y=
17 y =
18 y=
19 y=
20 y =
21 V=
23 V=
25 y =

X242, —-2<x<?2 2 y=1-x% —-2<xx<2
¥2—2x, —2<x<?2 4 y=4xr+x -2<x<2
=2x—4x +3, 0<x<2 6 p=—x>—2x+6, —4<x<0
Xt —2<x<?2 8 y=x> —-2<x<2
Bty —2<x<2
- x, —2<x<2
I3 +x+x, —2<x<2
—x3+12x—-12, —-3<x<3
xt4H 4342, —d<x<?
=4t -x, —2<x<g2
vt —2<vg2
=3 {x—12)? —-1<x<3
I/x, —d4<x<—-% and f<x<4
I/x+x, —4<x<-% and f<x<4
x7? =2<x< -4 and §<x<2
Xx+x7% —2<x<-% and $<xg2
:: 0<x<10 2 y:\_zjl, 0<x<10
i X
e —4<x<4 24 re o —d<x<4
Yz.\+1‘ —2<x<?2 26 y=\21_1, —%S.\'ﬁ%
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27 y=x t<x<4 28 r=2/x-x l<x<4
29 y=1/\/;<, t<x<4 30 y=x2 4 x V2 Lox<4q
31 y=/9-x% —2<x<2 32 y=/9+x% —d4x<xs<4
33 y =sinxcosx, 0<x<2rn 34 y=sinx +cosx, 0<x<2n
35 y=3sin(3x), 0<x<2rn 36 y=sin’x, 0<x<2n

37 y=tanx, —7n/3<x<n/3 38 y=1jcosx, —nmnf3<x<n/3
39 y=e ¥ —-2<x<2 40 y=eMDx  _2<x<2

41 y=Inx, lle<x<e 42 y=(nx)? lle<x<e

43 y=xe ¥, —1<x<3 44 y=x-—¢, —2<x<2
45 y=xlnx, e ?<x<e 46 y=x—1Inx, e"?<x<e
47 y=xe* —-3<x<1 48 y=e¢ ¥, —2<x<2

49 y=¢ex, t<x<4 50 y=In(1+x), —-3<x<3

PROPERTIES OF CONTINUOUS FUNCTIONS

This section develops some theory that will be needed for integration in Chapter 4.
We begin with a new concept, that of a hyperinteger. The hyperintegers are to the
integers as the hyperreal numbers are to the real numbers. The hyperintegers consist
of the ordinary finite integers, the positive infinite hyperintegers, and the negative
infinite hyperintegers. The hyperintegers have the same algebraic properties as the
integers and are spaced one apart all along the hyperreal line as in Figure 3.8.1.

Finite

T ~6-5-4-3-2-1 0 1 2 3 4 5 6 -

H-4 H-3 H-2 H-1 H H+l H+2 H+3 H+4

-H+I -H+2 -H+3 -H+4

-H-4 -H-3 -H-2 -H-| -H

Positive

Negative
infinite

infinite
Figure 3.8.1 The Set of Hyperintegers

The rigorous definition of the hyperintegers uses the greatest integer function
[x] introduced in Section 3.4, Example 6. Remember that for a real number x, [x]
is the greatest integer n such that n < x. A real number y is itself an integer if and
only if y = [x] for some real x. To get the hyperintegers, we apply the function [x]
to hyperreal numbers x (see Figure 3.8.2).
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0
-— |
-—
— H,H)
-——
S (H-1,H-1)
/ -—
/
s
7/
—
Figure 3.8.2
DEFINITION

A hyperinteger is a hyperreal number y such that y = [x] for some hyperreal x.

When x varies over the hyperreal numbers, [x] is the greatest hyperinteger
y such that y < x. Because of the Transfer Principle, every hyperreal number x is
between two hyperintegers [x] and [x] + 1,

[(x] <x<[x]+1

Also, sums, differences, and products of hyperintegers are again hyperintegers.

We are now going to use the hyperintegers. In sketching curves we divided
a closed interval [a, b] into finitely many subintervals. For theoretical purposes in
the calculus we often divide a closed interval into a finite or infinite number of equal
subintervals. This is done as follows.

Given a closed real interval [a, b], a finite partition is formed by choosing
a positive integer n and dividing [a, b] into n equal parts, as in Figure 3.8.3. Each
part will be a subinterval of length ¢ = (b — a)/n. The n subintervals are

[a,a+ t],[a+t,a+2t],...,[a+ (n— 1),b].
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Pyl 3

h S - g

a a+t a+2 a+nt=»b
Figure 3.8.3
The endpoints

aa+ta+2,...,a+m— 1, a+n=>b

are called partition points.

The real interval [a, b] is contained in the hyperreal interval [a, b]*, which
is the set of all hyperreal numbers x such that a < x < b. An infinite partition is
applied to the hyperreal interval [a, b]* rather than the real interval. To form an
infinite partition of [a, b1*, choose a positive infinite hyperinteger H and divide [a, b]*
into H equal parts as shown in Figure 3.8.4. Each subinterval will have the same
infinitesimal length 6 = (b — a)/H. The H subintervals are

[a,a+dl[a+d,a+25),....[a+ (K —-1Dd,a+ Kél,...,[a + (H — 1)3, 5],
and the partition points are
a,a+6,a+25...,a+ Kb,...,a+ Hé=b,

where K runs over the hyperintegers from 1 to H. Every hyperreal number x between
a and b belongs to one of the infinitesimal subintervals,

a4+ (K—-1¥<x<a+ Ké.

S

Figure 3.8.4 An infinite partition

We shall now use infinite partitions to sketch the proofs of three basic results,
called the Intermediate Value Theorem, the Extreme Value Theorem, and Rolle’s
Theorem. The use of these results will be illustrated by studying zeros of continuous
functions. By a zero of a function f we mean a point ¢ where f(c) = 0. As we can see
in Figure 3.8.5, the zeros of f are the points where the curve y = f(x) intersects the

T\ /
/’\N *

Zeros of a function f

flx)

Figure 3.8.56
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INTERMEDIATE VALUE THEOREM

Suppose the real function fis continuous on the closed interval [a, b] and f(x)
is positive at one endpoint and negative at the other endpoint. Then f has a
zero in the interval (a, b); that is, f(c) = 0 for some real ¢ in (a, b).

Discussion There are two cases illustrated in Figure 3.8.6:

JS@ <0< f(b) and  f(a) > 0 > f(b).

fb) — flay ——
4 / 5 b
fia) f- 2 ’ ) C\/\r
f®) pmmmm e

Figure 3.8.6

In the first case, the theorem says that if a continuous curve is below the
x-axis at g and above it at b, then the curve must intersect the x-axis at
some point ¢ between a and b. Theorem 3 in the preceding Section 3.7 on
curve sketching is simply a reformulation of the Intermediate Value
Theorem.

SKETCH OF PROOF We assume f(a) < 0 < f(b). Let H be a positive infinite
hyperinteger and partition the interval [, b]* into H equal parts
aa+9d0,a+25,...,a+ Hé =b.
Let ¢ + K& be the last partition point at which (¢ + Kd) < 0. Thus
fla+ Kd&) <0< fa+ (K + 1J).

Since f is continuous, f(a + K§) is infinitely close to f(a + (K + 1)d).
We conclude that f(a + K§) ~ 0 (Figure 3.8.7). We take ¢ to be the standard
part of a + K9, so that

1) = st(f(a + K&) = 0.

EXAMPLE 1 The function

which is shown in Figure 3.8.8, is continuous for 0 < x < 1. Moreover,

fO=1, fO=7-3=-2%

The Intermediate Value Theorem shows that f(x) has a zero f(c) = 0 for
some ¢ between 0 and 1.
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a+ K+ 1)8
C
a+ Kéd
[}
a\/c |

Figure 3.8.7

}7

0,1}
\; |
-1 0 c x
1
(1,-2%)

Figure 3.8.8

The Intermediate Value Theorem can be used to prove Theorem 3 of
Section 3.7 on curve sketching:

Suppose g is a continuous function on an interval I, and g(x) # 0 for all x
in I.

(i Ifg(c) > 0 for at least one c in I, then g(x) > 0 for all x in I.

(i) If g(c) < O for at least one c in I, then g(x) < 0 for all x in I.

PROOF (i) Let g(c) > 0 for some ¢ in I. If g(x;) < O for some other point x, in I,
then by the Intermediate Value Theorem there is a point x, between c
and x, such that g(x,) = 0, contrary to hypothesis (Figure 3.8.9). Therefore
we conclude that g(x) > 0 for all x in L.
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g(x) g(x)

11
i Xo X1 X1 X2
‘ \L g \L/

che————

Figure 3.8.9

EXTREME VALUE THEOREM

Let f be continuous on its domain, which is a closed interval [a,b]. Then f
has a maximum at some point in [a, b, and a minimum at some point in [a, b].

Discussion We have seen several examples of functions that do not have maxima
on an open interval, such as f(x) = 1/x on (0, o), or g(x) = 2x on (0, 1).
The Extreme Value Theorem says that on a closed interval a continuous
function always has a maximum.
SKETCH OF PROOF Form an infinite partition of [a, b]*,
aa+do,a+25...,a+ Hd=b>

By the Transfer Principle, there is a partition point a + K§ at which
f(a + K§) has the largest value. Let ¢ be the standard part of g + K&
(see Figure 3.8.10). Any point u of [q, b]* lies in a subinterval, say

a+Léd<u<a+ (L+ 1o
We have fla+ Ké&) = f(a + Lf),
and taking standard parts,

f©) = /).

This shows that f has a maximum at c.

a 7 c b
Figure 3.8.10 Proof of the Extreme Value Theorem
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ROLLE'S THEOREM

Suppose that f is continuous on the closed interval [a, b] and differentiable on
the open interval (a,; b). If

fa)=f(b) =0,
then there is at least one point ¢ strictly between a and b where f has derivative
zero; i.e.,

flley=20 for some ¢ in (a, b).

Geometrically, the theorem says that a differentiable curve touching the
x-axis at a and b must be horizontal for at least one point strictly between a and b.

PROOF We may assume that [a, b] is the domain of f. By the Extreme Value Theorem,
fhas a maximum value M and a minimum value m in [q, b]. Since f(a) = 0,
m < 0and M > 0 (see Figure 3.8.11).

Case 7 M = 0 and m = 0. Then [ is the constant function f(x) = 0, and therefore
['(c) = 0 for all points ¢ in (a, b).

Case 2 M > 0.Let f haveamaximumatc, f(c) = M. By the Critical Point Theorem,
f has a critical point at c. ¢ cannot be an endpoint because the value of f(x)
is zero at the endpoints and positive at x = ¢. By hypothesis, f”(x) exists at
x = c. It follows that ¢ must be a critical point of the type f'(c) = 0.

Case 3 m < 0. We let f have a minimum at ¢. Then as in Case 2, ¢ is in (g, b) and

Sl =0
|
|
|
I
. —— .- +— -
a ¢ b a c b
Case |, m=M=0 Case 2, M >0
a c b a : c b
Case 3, m<0 Case2and 3, m<O0O<M

Figure 3.8.11 Rolle’s Theorem

EXAMPLE 2 f(x) = (x — 1)*(x — 2)°, a = 1, b = 2. The function f is continuous
and differentiable everywhere (Figure 3.8.12). Moreover, f(1) = f(2) = 0.
Therefore by Rolle’s Theorem there is a point ¢ in (1, 2) with f'(¢) = 0.

Let us find such a point c. We have
) = 3(x — DXx — 2% + 2(x — D(x — 2)* = (x — D(x — 2’(5x — 7).

165



166 3 CONTINUOUS FUNCTIONS

J(x)
1

Figure 3.8.12 ! £ = (x — D2 (x — 2)?

Notice that f'(1) = 0 and f’(2) = 0. But Rolie’s Theorem says that there is
another point ¢ which is in the open interval (1,2) where f'(c) = 0. The
required value for ¢ is ¢ = £ because /(Z) = 0and I < % < 2.

4
x — x2, a=—\/5, b=\/§.

EXAMPLE 3 Letf(x) = )

Then f{a) = f(b) = 0.
Rolle’s Theorem says that there is at least one point ¢ in (— \/2, \/5) at which

f(c) = 0. As a matter of fact there are three such points,

c=—1, ¢=0, ¢=1.

We can find these points as follows:
Sx) =2x* — 2x = 2x(x? = 1),

Jx)=0 when x=0 or x= +1.

The function is drawn in Figure 3.8.13.

y

1
\
1
\
1
\
¥

—

-1 0

N7

Figure 3.8.13

EXAMPLE 4 f(x) = /1 —x% a= —1,b =1 Then f(—1) = f(1) = 0. The func-

tion fis continuous on [ — 1, 1] and has a derivative at each point of (—1, 1)
as Rolle’s Theorem requires (Figure 3.8.14). Note, however, that f'(x) does not
exist at either endpoint, x = —1 or x = 1. By Rolle’s Theorem there is a

point ¢ in (— 1, 1) such that /'(¢) = 0, ¢ = 0 is such a point, because

)= ——2  f(0)=0.

[ —x2’
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f(x) f(x)
1 0 1 x -1 0 1 x
S(x)=+1—x2 f(x)=1—x2/3
Figure 3.8.14 Figure 3.8.15

EXAMPLE 6 f(x)=1—-x%3 a=—1, b=1. Then f(—-1)=f(1)=0, and
f(x) = —3x~ Y3 for x # 0.£'(0) is undefined. There is no point ¢ in (—1, 1)
at which f'(¢) = 0. Rolle’s Theorem does not apply in this case because f'(x)
does not exist at one of the points of the interval (—1, 1), namely at x = 0.
In Figure 3.8.15, we see that instead of being horizontal at a point in the
interval, the curve has a sharp peak.

Rolle’s Theorem is useful in finding the number of zeros of a differentiable
function f. It shows that between any two zeros of f there must be one or more zeros
of f'. It follows that if /' has no zeros in an interval I, then f cannot have more than
one zero in I.

EXAMPLE 6 How many zeros does the function f(x) = x> + x + 1 have? We use
both Rolle’s Theorem and the Intermediate Value Theorem.

Using Rolle’s Theorem: f'(x) = 3x%* + 1. For all x, x> > 0, and hence
f'(x) = 1. Therefore f(x) has at most one zero.

Using the Intermediate Value Theorem: We have f(—1) = —1, f(0) = 1.
Therefore f has at least one zero between —1 and 0.

CONCLUSION f has exactly one zero, and it lies between —1 and O (see Figure
3.8.16).

x)=x34+x+1
Figure 3.8.16 /&)
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Our method of sketching curves in Section 3.7 depends on a consequence
of Rolle’s Theorem called the Mean Value Theorem. It deals with the average slope
of a curve between two points.

DEFINITION

Let f be defined on the closed interval (a, b]. The average slope of | between a
and b is the quotient

J(b) — fla)

average slope =
b—a

We can see in Figure 3.8.17 that the average slope of f between a and b is
equal to the slope of the line passing through the points (a,f(a)) and (b, f(b)).
This is shown by the two-point equation for a line (Section 1.3). In particular, if
[ is already a linear function f(x) = mx + ¢, then the average slope of f between
a and b is equal to the slope m of the line y = f(x).

(b, f(b))
Sf(x)
f6) — fl@)

(a, f(a)) b—a

g S
=

H
|
!
a

Figure 3.8.17 Average Slope

This is shown by the two-point equation for a straight line (Section 1.2). In particular,
if f is already a linear function f(x) = mx + ¢, then the average slope of f between
a and b is equal to the slope m of the straight line y = f(x).

MEAN VALUE THEOREM

Assume that f is continuous on the closed interval [a, b] and has a derivative
at every point of the open interval (a,b). Then there is at least one point ¢ in
(a, b) where the slope f'(c) is equal to the average slope of f between a and b,

_Jb) ~ f(a)
T b—a

Remark In the special case that f(a) = f(b) = 0, the Mean Value Theorem becomes
Rolle’s Theorem:

1(e)

_ S~ fl@) _0-0_

) b—a  b-—a

0.
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On the other hand, we shall use Rolle’s Theorem in the proof of the Mean
Value Theorem. The Mean Value Theorem is illustrated in Figure 3.8.18.

f(x) f(x)

1) ) - fla)

8 f--—y
o bomcdoo ]

Sl
=

Figure 3.8.18 The Mean Value Thecrem

PROOF OF THE MEAN VALUE THEOREM Let m be the average slope, m =
(f(b) — f(a))/(b — a). The line through the points (a, f(a)) and (b, f(b)) has
the equation

Ix) = f(a) + m(x — a).
Let A(x) be the distance of f(x) above I(x), |
h(x) = f(x) — (x).
Then h is continuous on [a, b] and has the derivative
Hx)=f'(x) - I(x)=f(x)—m
at each point in (a, b). Since f{x) = I(x) at the endpoints a and b, we have
h(a) = 0, h(b) = 0.

Therefore Rolle’s Theorem can be applied to the function h, and there is a
point ¢ in (g, b) such that #'(¢c) = 0. Thus

0 =H)=f'c) =) = f(c) — m,

whence f'(c) = m.

We can give a physical interpretation of the Mean Value Theorem in terms
of velocity. Suppose a particle moves along the y-axis according to the equation
y = f(t). The average velocity of the particle between times a and b is the ratio

f) — fla)
b—a

of the change in position to the time elapsed. The Mean Value Theorem states that
there is a point of time ¢, a < ¢ < b, when the velocity f'(c) of the particle is equal to
the average velocity between times a and b.

Theorems 1 and 2 in Section 3.7 on curve sketching are consequences of
the Mean Value Theorem. As an illustration, we prove part (ii) of Theorem 1:

If f'(x) > O for all interior points x of I, then f is increasing on I



3 CONTINUQUS FUNCTIONS

PROOF Let x, < x, where x, and x, are points in /. By the Mean Value Theorem
there is a point ¢ strictly between x, and x, such that

S(x3) _f(xl).

XZ—XI

Sy =

Since ¢ is an interior point of I, f'(¢) > 0. Because x, < x,, x; — x; > 0.
Thus

fO) =S )

Xy — Xy

0, SO =S >0, fx2)>f(x)

This shows that fis increasing on [.

PROBLEMS FOR SECTION 3.8

In Problems 1-16, use the Intermediate Value Theorem to show that the function has at least
one zero in the given interval.

1 fy=x*—23—-x+1, 0<xx<l1
2 J)=x+x=3/x, 1<x<?2

3 f=x+/x+1-x, 4<x<9
4 [ = x4+ 1x*—x% 1<x<2

2

5 ) =———/x*+2 0<x<1

1+x\/;c
6 f)=x+x~/x+1, 0<x<1
7 f=x+x*-1, 0<x<1

3
8 ) =x+1—-——— 0<x<1
x+1
9 fx)=1-3x+x3 0<x<l
10 S =1-3x+x3 1<x<?2
11 fX)=x2+/x—1, 0<x<1
12 fX)=x*-Ex+1"" 0=<x<1
13 flx)=cosx —15, 0<x<n=
14 f(x) =sinx —2cosx, 0<x<n
1

15 f(x)=lnx—;, l<x<e
16 fxy=¢e"—10x, 1<x<10

In Problems 17-30, determine whether or not f* has a zero in the interval (a, b). Warning: Rolle’s
Theorem may give a wrong answer unless all the hypotheses are met.

17 f(x) = 5x* — 8x, [a,b]=1[0%]

18 fy=1—-x"% [ab]=[-11]

19 ) = /16 —x* [a,b] =[-2,2]

20 () = /4= x>, [a,b] = [—128,128]

21 ) =1/x—-x, [ab]l=[-11]

22 fG) == DHx =2, [a,b]=[12]

23 J) = (x — 4%, [a,b] =[0,4]



24
25
26

27
28
29
30
31
32
33
34

EXTRAPROBLEMS FOR CHAPTER 3

=2 — ) 3
f(x) = i r2’ [a,b] =[2,4]
f)=Ix{—1, [ab]l=[-11]
10="22 p =02

x —1

f(x) = xsinx, [a,b] =[0,7]

f(x) = e*cosx, [a,b] =[—n/2,7/2]

f(x) =tanx, [a,b]=[0,7]

f() =In(1 —sinx), [a,b]=1[0,7]

Find the number of zeros of x* + 3x + 1in [—2, —1].
Find the number of zeros of x* + 2x* — 2in [0, 1].
Find the number of zeros of x* — 8x — 4.

Find the number of zeros of 2x + \/)_c — 4.

In Problems 35-42, find a point ¢ in (g, b) such that f(b) — f(a) = ()b — a).

35
36
37
38
39
40

41

42
43

44

a 45

) =x*+2x -1, [a,b]=1[0,1]

fG)=x° [ab]=1[0,3]

f) =x*3, [a,b]=[0,1]

fxy=./x+1, [ab]=1[0,2]

f6)=x+/x [ab]=[0,4]

f)y=2+(1/x), [ab]l=1[12]
x—1

fe) = PO [a.b] =[0,2]

fx)=x/x+1, [a,b]=10,3]

Use Rolle’s Theorem to show that the function f(x) = x> — 3x + b cannot have more
than one zero in the interval [ —1, 1], regardless of the value of the constant b.

Suppose f, ', and f” are all continuous on the interval [a, b], and suppose fhas at least
three distinct zeros in [, b]. Use Rolle’s Theorem to show that f“ has at least one zero in

[a, b].

Suppose that f”(x) > 0 for all real numbers x, so that the curve y = f(x) is concave
upward on the whole real line as illustrated in the figure. Let L be the tangent line to the

curve at x = c. Prove that the line L lies below the curve at every point x # c.

y
f(x)
\ L

EXTRA PROBLEMS FOR CHAPTER 3

1
2

Find the surface area A of a cube as a function of its volume V.

Find the length of the diagonal d of a rectangle as a function of its length x and width y.
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10

11

12

14

15
16

17
18

19
20

21

22

23

24

25

3 CONTINUOUS FUNCTIONS

An airplane travels for t hours at a speed of 300 mph. Find the distance x of travel as a
function of 1.

An airplane travels x miles at 500 mph. Find the travelling time ¢ as a function of x.

A5 foot tall woman stands at a distance x from a 9 foot high lamp. Find the length of her
shadow as a function of .

The sides and bottom of a rectangular box are made of material costing $1/sq (t. and
the top of material costing $2/sq fi. Find the cost of the box as a function of the length x,
width y. and height - feet.

A piece of dough with a constant volume of 10 cu in. is being rolled in the shape of a
right circular cylinder. Find the rate of increase of its length when the radius is 4 inch
and is decreasing at i inch per second.

Car A travels north at 60 mph and passes the point P at 1:00. Car B travels east at
40 mph and passes the point P at 3:00. Find the rate of change of the distance between
the two cars at 2:00.

A cup of water has the shape of a cone with the apex at the bottom, height 4in., and a
circular top of radius 2 in. The loss of water volume due to evaporation is 0.01 4 cu in./sec
where A is the water surface area. Find the rate at which the water level drops due to
evaporation.

A country has a constant national income and its population is decreasing by one
million people per year. Find the rate of change of the per capita income when the
population is 50 million and the national income is 100 billion dollars.

Evaluate lim x3 — 4x2 4+ 3x — |

. (x2=09) . 242
al ~ st
Evaluate }1{11‘ ~ 3 13 Evaluate'lﬂlgl‘ 34
Evaluate lim YOt A =/0
Ax—=0"~ Ax

Find the set of all points at which f(x) = \/174-,\' + \/,1_ — x is continuous.
Find the set of all points at which

x—2
= 3

glx) =

is continuous.
Find the set of all points at which f(x) = \ /(4 — x%)(x2 — 1) is continuous.

Assume a < b. Show that f(x) = . /(x — a)(b — x) is continuous on the closed interval
[a, b].
Show that g(x) = (x — 1)'/3 is continuous at every real number x = ¢.
Find the maximum and minimum of
S(x) = 4x3 — 3x% + 2, -l <x<l

Find the maximum and minimum of

4

fx)=x+—, l<x<4
x*

Find the maximum and minimum of

f(x)=12x — 5] + 3, 0<x<10
Find the maximum and minimum of
flx) = 4 — 3x%3, —-l<x<l

Find the maximum and minimum of
fyy=x-1" -2, 0<x<2

Find the rectangle of maximum area which can be inscribed in a circle of radius 1.
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28

29
30

31
32
33
34
35

37
38

39

40
41

42

43
44

45

46
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A box with a square base and no top is to be made with 10 sq ft of material. Find the
dimensions which will have the largest volume.

In one day a factory can produce x items at a total cost of ¢, + ax dollars and can sell
x items at a price of bx~'/3 dollars per item. How many items should be produced for
a maximum daily profit?
Test the curve f(x) = x> — 5x + 4 for maxima and minima.
Test the curve f(x) = 3x* + 4x3 — 12x? for maxima and minima.
The light intensity from a light source is equal to S/D? where S is the strength of the
source and D the distance from the source. Two light sources A and B have strengths
§, = 2and Sy = 1 and are located on the x-axis at x, = 0 and xz = 10. Find the point
x, 0 < x < 10, where the total light intensity is a minimum.
Find the right triangle of area { with the smallest perimeter.
Find the points on the parabola y = x? which are closest to the point (0, 2).
Find the number of zeros of f(x) = x> — 8x? + 4x + 2.
Find the number of zeros of f(x) = x* — 2x? + 2x — 4.
Sketch thecurve y = x* — x3, —1<x< 1.
Sketch thecurve y = x2 + x72, {<x<2
Find all zeros of f(x) = x> — 5x + 10.
Show that the function f{x) = x® — 5x> — 3x? 4- 4 has at least one zero in the interval
[0, 13.
Show that the function f(x) = ./x + 1 + . Yx + 8 — 2 has at least one zero in the
interval [—1,0].
Show that the equation 1 — x? = \/: has at least one solution in the interval [0, 1].
Prove that lim,_,. f(x) exists if and only if there is a function g(x) such that
(a) g(x)is continuous at x = ¢,
(b) g(x) = f(x) whenever x # c.
LetS = {a;,...,a,} beafinite set of real numbers. Show that the characteristic function
of S,

1 if x is in S,

S = {0 otherwise,

is discontinuous for x in S and continuous for x not in S.
Show that the function f(x) = \/ |;| is continuous but not differentiable at x = 0.

Let

1 if 1 < |x]
flxy=41/n ifim<|x|<l/fin—1), n=2734,...
0 ifx=0.
Show that f is continuous at x = 0 but discontinuous at x = l/n and x = —1/n,
n=1273....
Let
1 if [ <|x|
fy=<41m* ifimn<|x<lfn-1), n=23,...
0 if x =0.
Prove 5ha3t f is differentiable at x = 0 but discontinuous at x = 1/n and x = —1/n,
n=123,....

Suppose f(x) is continuous on [0, 1] and f(0) = 1, f(1) = 0. Prove that there is a point
¢ in (0, 1) such that f(c) = c.
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3 CONTINUOUS FUNCTIONS

Suppose f(x) is continuous for all x, and f(0} = 0, f(1) = 4, f(2) = 0. Prove that there
is a point ¢ in (0, 1) such that f(¢) = f(c + 1).

Prove that if x = ¢ is the only real solution of f(x) = 0, then x = ¢ is also the only
hyperreal solution.

Prove that if n is odd. then the polynomial
X, x" o ax +oaq
has no maximum and no minimum.
Prove that if n is even then the polynomial
X4 a, X"+ ax + ag
has no maximum.
Prove that if # is even then the polynomial
X a, X" ax +oa
has a minimum. You may use the fact that there are only finitely many critical points.
Prove the First Derivative Test: Assume f{x) is continuous on an interval I.
If f'(a) > O for all @ < cand f7(b) < O for all b > ¢, then f has a maximum at x = c.
If f'(a) < Ofor all a < c and f'(b) > Oforall b > ¢, then f has a minimum at x = ¢.

Suppose f'is differentiable and f(x} > | for all x. If /{0) = 0, show that f(x) > x for all
positive x.

Suppose f“(x) > 0 for all x. Show that for any two points P and Q above the curve
y = f(x), every point on the line segment PQ is above the curve y = f(x).

Suppose f(0) = A and f’(x) has the constant value B for all x. Use the Mean Value
Theorem to show that f is the linear function f(x) = A + Bx.

Suppose f’(x) is continuous for all real x. Use the Mean Value Theorem to show that
for all finite hyperreal b and nonzero infinitesimal Ax,

flb + Ax) — [(b)

Iy= A



4.1

INTEGRATION

THE DEFINITE INTEGRAL

We shall begin our study of the integral calculus in the same way in which we began
with the differential calculus—by asking a question about curves in the plane.
Suppose f is a real function continuous on an interval I and consider the
curve y = f(x). Let a < b where a, b are two points in , and let the curve be above the
x-axis for x between a and b; that is, f(x) = 0. We then ask: What is meant by the
area of the region bounded by the curve y = f(x), the x-axis, and the lines x = a and
="b? That is, what is meant by the area of the shaded region in Figure 4.1.17 We
call this region the region under the curve y = f(x) between a and b.

-

Figure 4.1.1 The Region under a Curve

The simplest possible case is where f'is a constant function; that is, the curve
is a horizontal line f(x) = k, where k is a constant and & > 0, shown in Figure 4.1.2.
In this case the region under the curve is just a rectangle with height k and width
b — a, so the area is defined as

Area = k+(b — a).

The areas of certain other simple regions, such as triangles, trapezoids, and semi-
circles, are given by formulas from plane geometry.

175
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fX) =k

7

area = k(b — a)

[

Figure 4.1.2

The area under any continuous curve y = f(x) will be given by the definite
integral, which is written

J;bj(x) dx.

Before plunging into the detailed definition of the integral, we outline the main ideas.

First, the region under the curve is divided into infinitely many vertical
strips of infinitesimal width dx. Next, each vertical strip is replaced by a vertical
rectangle of height f(x), base dx, and area f(x) dx. The next step is to form the sum
of the areas of all these rectangles, called the infinite Riemann sum (look ahead to
Figures 4.1.3 and 4.1.11). Finally, the integral [4 f(x) dx is defined as the standard
part of the infinite Riemann sum.

The infinite Riemann sum, being a sum of rectangles, has an infinitesimal
error. This error is removed by taking the standard part to form the integral.

It is often difficult to compute an infinite Riemann sum, since it is a sum of
infinitely many infinitesimal rectangles. We shall first study finite Riemann sums,
which can easily be computed on a hand calculator.

Suppose we slice the region under the curve between g and b into thin vertical
strips of equal width. If there are n slices, each slice will have width Ax = (b — a)/n.
The interval [a, b] will be partitioned into n subintervals

[XO’ xl]a [.\'1 ’ XZ]’ v [xn— 1 X,,],
where Xo=a,X,=a+ Ax,x, =a+2Ax,...,x,=b.
The points xq, Xy, ..., x, are called partition points. On each subinterval [x,_ . x,.],

we form the rectangle of height f(x, ). The kth rectangle will have area
flxe_ )« Ax.

From Figure 4.1.3, we can see that the sum of the areas of all these rectangles will be
fairly close to the area under the curve. This sum is called a Riemann sum and is equal
to

Sxo)Ax + f{x)Ax + - + flx,- ) Ax.

It is the area of the shaded region in the picture. A convenient way of writing Riemann
sums is the “Z-notation” (Z is the capital Greek letter sigma),

DS Ax = f{xo) Ax + f{x)Ax + -+ + f(x,_ ) Ax.
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J(x)
f(xﬁ) f(Xﬁ)

f(x4)

fx3) %/
S(x2) /
f(xo) f(xi/) /ﬁAx*/

A\

Figure 4.1.3 The Riemann Sum

The a and b indicate that the first subinterval begins at a and the last subinterval ends
at b.

We can carry out the same process even when the subinterval length Ax does
not divide evenly into the interval length b — 4. But then, as Figure 4.1.4 shows, there
will be a remainder left over at the end of the interval {4, b], and the Riemann sum will
have an extra rectangle whose width is this remainder. We let n be the largest integer
such that

a+ nlAx <b,
and we consider the subintervals
[xoa xl]a A {X,,_ 11 xn]a [xna b],

where the partition points are

Xo=4a, X, =a+Ax, x=a+2Ax,..., x,=a+ nAx, b.
fx)
fxs)
f(xy) |:
]
fx5) '
f(xo) fx9) y 7 i
(xy) . :
|
1
|
[

7z
.

Xg=4a x X9 X3 X4 x5 b xz+ Ax

X

Figure 4.1.4
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x, will be less than or equal to b but x, + Ax will be greater than b. Then we define
the Riemanrn sum to be the sum

T 700 Ax = flxo) Ax + fe) Ax 4 =+ flen-1) Ax + fx)(b — x,).

Thus given the function f, the interval [a, b], and the real number Ax > 0, we have
defined the Riemann sum ) ? f(x) Ax. We repeat the definition more concisely.

DEFINITION

Let a < b and let Ax be a positive real number. Then the Riemann sum
b ~ Lo ~
2P f(x) Ax is defined as the sum
b

LS Ax = f(xo) Ax + fx)Ax + o + f(x, 1) Ax + f(x,)(b — x,)

where n is the largest integer such that a + n Ax < b, and
Xo=a, x,=a+Ax, "+, x,=a-+ndlx, b

are the partition points.

If x, = b, the last term f(x,)(b — x,) is zero. The Riemann sum )’ f(x) Ax
is a real function of three variables a, b, and Ax,

f:f(x) Ax = S(a, b, Ax).

The symbol x which appears in the expression is called a dummy variable (or bound
variable), because the value of ) ” f(x) Ax does not depend on x. The dummy variable
allows us to use more compact notation, writing f(x) Ax just once instead of writing
fxo) Ax, f(x,) Ax, f(x;) Ax, and so on.

From Figure 4.1.5 it is plausible that by making Ax smaller we can get the
Riemann sum as close to the area as we wish.

f(x)

a b X

Figure 4.1.5

EXAMPLE 1 Let f(x) = x. In Figure 4.1.6, the region under the curve from x = 0
to x = 2 is a triangle with base 2 and height 1, so its area should be
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flx) =

Area =1

X

-

Figure 4.1.6

Let us compare this value for the area with some Riemann sums. In Figure
4.1.7, we take Ax = 1. The interval [0, 2] divides into four subintervals
[0, 47, [%, 11, [1, £, and [3, 2]. We make a table of values of f (x) at the lower

endpoints.
Xk | 0 7 1 3
fe) 0§ & 3
¥y
Ax =-;-
\\ Riemann sum = %
o 1 3 X
2 1 2 2
Figure 4.1.7
The Riemann sum is then
2
Y f)Ax =03+ 55453 4+32=1%
4]

In Figure 4.1.8, we take Ax = %. The table of values is as follows.

5 [ 0433 %3¢
Sy 10§ 3 3 83 § %
The Riemann sum is
2
LT R CE O B B B
[¢]

We see that the value is getting closer to one.

Finally, let us take a value of Ax that does not divide evenly into the interval
length 2. Let Ax = 0.6. We see in Figure 4.1.9 that the interval then divides
into three subintervals of length 0.6 and one of length 0.2, namely [0, 0.6],

[0.6, 1.2], [1.2, 1.8], [1.8, 2.0].
X, | 0 06 12 18
fix) | 0 03 06 09

179
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'_\x=% Y1 Ax =0.6

Riemann sun = % §§ Riemann sum = .72 §
W

o 2 X 0 0.6 1.2 1.8 2 x

Figure 4.1.8 Figure 4.1.9

The Riemann sum is

2
Y f(x) Ax = 0(.6) + (3)(.6) + (6)(.6) + (9)(2) = .72.
0

EXAMPLE 2 Let f(x) = /1 — x?, defined on the closed interval I = [—1, 1]. The
region under the curve is a semicircle of radius 1. We know from plane
geometry that the area is /2, or approximately 3.14/2 = 1.57. Let us compute
the values of some Riemann sums for this function to see how close they are
to 1.57. First take Ax = § as in Figure 4.1.10(a). We make a table of values.

X | -1 =12 0 1n
fl) |0 A1 4

The Riemann sum is then

if(x)Ax:o-l/erv/ﬁ.l/er 1012 + /34 1)2

= M ~ 1.37.
2

Next we take Ax = £. Then the interval [ —1, 1] is divided into ten subinter-
vals as in Figure 4.1.10(b). Our table of values is as follows.

o |- 422 Ly 12304
- ] 5 5 5 5 5 5 55
. RN TN RNCTENCIE
‘ ’ 5 5 5 5 5 55
f(x) S(x)
| ./A /% %
1 0O I x (0] x
-1 -3 3 1 -1 1
(a) (b)

Figure 4.1.10
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The Riemann sum is

! 1 3 4 J21 . J24 24 /21 4 3
Zf(X)Ax=—0+—+—+—+—+1+£+_+_+_
= 5 5°5 5 5 5 5 575

194221+ 2,/24 s
- 25 T

Thus we are getting closer to the actual area /2 ~ 1.57.

By taking Ax small we can get the Riemann sum to be as close to the area
as we wish.

Our next step is to take Ax to be infinitely small and have an infinite Riemann
sum. How can we do this? We observe that if the real numbers a and b are held fixed,
then the Riemann sum

if(x) Ax = S(Ax)

is a real function of the single variable Ax. (The symbol x which appears in the
expression is a dummy variable, and the value of

b
Y f(x) Ax
depends only on Ax and not on x.} Furthermore, the term

Zb:f(x) Ax = S(Ax)

is defined for all real Ax > 0. Therefore by the Transfer Principle,
b
Y f(x)dx = S(dx)

is defined for all hyperreal dx > 0. When dx > 0 is infinitesimal, there are infinitely
many subintervals of length dx, and we call

b
Y f(x)dx

an infinite Riemann sum (Figure 4.1.11).

f(x)

Figure 4.1.11 Infinite Riemann Sum
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We may think intuitively of the Riemann sum

b
Y f(x)dx
as the infinite sum

fxo)dx + flx)dx + -+ flxyg_dx + f(xg)(b — xg)

where H is the greatest hyperinteger such that a + H dx < b. (Hyperintegers are
discussed in Section 3.8.) H is positive infinite, and there are H + 2 partition points
Xo» X1s .. s Xg, b A typical term in this sum is the infinitely small quantity f(xx) dx
where K is a hyperinteger, 0 < K < H,and xx = a + K dx.

The infinite Riemann sum is a hyperreal number. We would next like to take
the standard part of it. But first we must show that it is a finite hyperreal number and
thus has a standard part.

THEOREM 1

Let f be a continuous function on an interval I, let a < b be two points in I, and
let dx be a positive infinitesimal. Then the infinite Riemann sum

b
Y f(x)dx
is a finite hyperreal number.

PROOF Let B be a real number greater than the maximum value of f on [a, b].
Consider first a real number Ax > 0. We can see from Figure 4.1.12 that the

—— ——b—a ————*

nedx —

| 7
Y

Figure 4.1.12 a b

finite Riemann sum is less than the rectangular area B« (b — a);
Zb:f(x)Ax < B+(b — a).

Therefore by the Transfer Principle,
if(x) dx < B+«(b — a).

In a similar way we let C be less than the minimum of f on [a, ] and show
that
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b
Y f(x)dx > C+(b — a).

Thus the Riemann sum  Y? f(x)dx is finite.

We are now ready to define the central concept of this chapter, the definite
integral. Recall that the derivative was defined as the standard part of the quotient
Ay/Ax and was written dy/dx. The “definite integral” will be defined as the standard
part of the infinite Riemann sum

b
Y. f(x) dx,

and is written [° f(x) dx. Thus the Ax is changed to dx in analogy with our differential
notation. The X is changed to the long thin §, i.e., j, to remind us that the integral is
obtained from an infinite sum. We now state the definition carefully.

DEFINITION

Let f be a continuous function on an interval I and let a < b be two points in 1.
Let dx be a positive infinitesimal. Then the definite integral of f from a to b with
respect to dx is defined to be the standard part of the infinite Riemann sum with
respect to dx, in symbols

'(bf(x) dx = st(zb:f(x) dx) .
We also define faf(x) dx =0,

L “fl) dx = —J;bf(x) dx.

By this definition, for each positive infinitesimal dx the definite integral

wa (x) dx

is a real function of two variables defined for all pairs (4, w) of elements of I. The
symbol x is a dummy variable since the value of

| uwf(x) dx

does not depend on x.

In the notation ) f(x)dx for the Riemann sum and [® f(x)dx for the
integral, we always use matching symbols for the infinitesimal dx and the dummy
variable x. Thus when there are two or more variables we can tell which one is the
dummy variable in an integral. For example, x*¢ can be integrated from 0 to 1 with
respect to either x or ¢. With respect to x,

1
Y x*tdx = xgtdx + x}tdx + - + xj_tdx
0

183
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(where dx = 1/H), and we shall see later that
1
f x2tdx = st(xgtdx + x3tdx + - + xj_ 0dx) = it
(¢}
With respect to t, however,
1
Y xPtdt = xtgdt + X2t dt + - 4+ X2, dt,
0

and we shall see later that
1
f x*rde = 4x2,
[¢]

The next two examples evaluate the simplest definite integrals. These
examples do it the hard way. A much better method will be developed in Section 4.2.

EXAMPLE 3 Given a constant ¢ > 0, evaluate the integral |} ¢ dx.

Figure 4.1.13 shows that for every positive real number Ax, the finite Riemann
sum is
b

Y cAx = c(b — a).

a

By the Transfer Principle, the infinite Riemann sum in Figure 4.1.14 has the
same value,

b
Y cdx = c(b — a).
Taking standard parts,
b
fcdx =cb — a).

This is the familiar formula for the area of a rectangle.

x x+dx

le— 1 Ax ——»

cdx |

AP

Figure 4.1.13 Figure 4.1.14
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EXAMPLE 4 Given b > 0, evaluate the integral {5 x dx.

The area under the line y = x is divided into vertical strips of width dx.
Study Figure 4.1.15. The area of the lower region A is the infinite Riemann
sum

b
(6)) area of 4 = Y xdx.
0

By symmetry, the upper region B has the same area as A4;
) area of A = area of B.

Call the remaining region C, formed by the infinitesimal squares along the
diagonal. Thus

3 area of A + area of B + area of C = b2

Each square in C has height dx except the last one, which may be smaller,
and the widths add up to b, so

4) 0 < area of C < bdx.
Putting (1)-(4) together,

b b
2) xdx <b* < (2Zxdx) + bdx.
0 0

Since b dx is infinitesimal,

b
2Y xdx = b?,
0

2

b b
gxdx x5

Taking standard parts, we have

b b2
xdx = —.
J 2 =3

Figure 4.1.15



186

4.2

4 INTEGRATION

PROBLEMS FOR SECTION 4.1

Compute the following finite Riemann sums. If a hand calculator is available, the Riemann sums
can also be computed with Ax = 5.

1 Y (3x + 1) Ax, Ax =14 2 20 Bx + DAx, Ax =13
3 YL Gx+ DAy Ax =} 4 oa’ax Ax =}
5 Y1 2x2 Ax, Ax =1 6 3o (2x — 1) Ax, Ax =1
7 T3 (2x — 1) Ax, Ax =2 8 2o DAy, Ax =3
9 Y2 (x? — 1) Ax, Ax =4 10 Th (P = DA, Ax =75
11 33, (5x% — 12) Ax, Ax =2 12 33, (5x% — 12) Ax, Ax =1
13 (1 + 1/x) Ax, Ax =4 14 351072 Ax. Ax =1
15 YO, x*Ax, Ax =3 16 2Lk Ax, Ax =3
17 e /x Ax, Ax =1 18 22, 1x — 4] Ax, Ax =2
19 Y rsinx Ax, Ax =mn4d 20 Yo sin?x Ax. Ax = ;4
21 Y4 et Ax, Ax = 1.5 22 Yo xet Ax, Ax =145
l X
23 > T nx Ax, Ax =1 24 33 2\—\ Ax. Ax =1
25 Let b be a positive real number and n a positive integer. Prove that if Ax = b/n,
b
YxAx=(1 42+ + (1 — 1)Ax~
0
. an — 1)
Using theformula | + 2+ + (n — 1) = 5 prove that
b
Y xAx = (1 — l/n)b?2.
0
26 Let H be a positive infinite hyperinteger and dx = b/H. Using the Transfer Principle and
Problem 25, prove that %} x dx = b?%/2.
27 Let b be a positive real number, n a positive integer, and Ax = b/n. Using the formula
-1 -1
124224324+ (n— 1)2=ﬂ1—)6(i—*),
prove that
b - 1)@2n — 1) b?
2 Ay = a(n b~
%"’\ * 6 n?
28 Use Problem 27 to show that [§ x* dx = b3/3.

FUNDAMENTAL THEOREM OF CALCULUS

In this section we shall state five basic theorems about the integral, culminating in
the Fundamental Theorem of Calculus. Right now we can only approximate a
definite integral by the laborious computation of a finite Riemann sum. At the end
of this section we will be in a position easily to compute exact values for many definite
integrals. The key to the method is the Fundamental Theorem. Our first theorem
shows that we are free to choose any positive infinitesimal we wish for dx in the
definite integral.
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THEOREM 1

Given a continuous function f on [a,b] and two positive infinitesimals dx
and du, the definite integrals with respect to dx and du are the same,

ff(x) dx = J;bf(u) du.

From now on when we write a definite integral [2 f(x) dx, it is understood
that dx is a positive infinitesimal. By Theorem 1, it doesn’t matter which infinitesimal.

The proof of Theorem 1 is based on the following intuitive idea. Figure 4.2.1
shows the two Riemann sums Y5 f(x)dx and Y f(u) du. We see from the figure
that the difference Y5 f(x)dx — Y5 f(u)du is a sum of rectangles of infinitesimal
height. These difference rectangles all lie between the horizontal lines y = —¢& and
y = &, where ¢ is the largest height. Thus —&(b — a) < 305 f(x)dx — Y.) f(w)du <
&b — a). Taking standard parts,

b
0< fbf(x)dx - f f(wdu <0,

Lbf(x) dx = J;bf(u) du.

i

du

L

f&x)

)

Figure 4.2.1
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Theorem 1 shows that whenever Ax is positive infinitesimal, the Riemann
sum is infinitely close to the definite integral,

b b
Y f(x) Ax = J 1) dx.

This fact can also be expressed in terms of limits. It shows that the Riemann sum
approaches the definite integral as Ax approaches 0 from above, in symbols

b
J f(x)dx = lim if(x) Ax.

Ax— 0%t a

Given a continuous function f on an interval I, Theorem 1 shows that the
definite integral is a real function of two variables @ and b,

b
A(a, b) = f f{x)dx, a,bin I,

We now formally define the area as the definite integral shown in Figure 4.2.2.

Jx)

77

a b

Figure 4.2.2

DEFINITION

If [ is continuous and f(x) = 0 on [a, b], the area of the region below the
curve y = f(x) from a to b is defined as the definite integral:

b
Area = f f(x)dx.

The next two theorems give basic properties of the integral.

THEOREM 2 (The Rectangle Property)

Suppose [ is continuous and has minimum value m and maximum value M
on a closed interval [a,b]. Then

b
mb — a) < f S dx < M — a).

That is, the area of the region under the curve is between the area of the rectangle
whose height is the minimum value of f and the area of the rectangle whose
height is the maximum value of f in the interval [a, b).



4.2 FUNDAMENTAL THEOREM OF CALCULUS

The Extreme Value Theorem is needed to show that the minimum value m
and maximum value M exist. The rectangle of height m is called the inscribed rectangle
of the region, and the rectangle of height M is called the circumscribed rectangle.
From Figure 4.2.3, we see that the inscribed rectangle is a subset of the region under
the curve, which is in turn a subset of the circumscribed rectangle. The Rectangle
Property says that the area of the region is between the areas of the inscribed and
circumscribed rectangles.

y

M p-----

"V,

a b x

Figure 4.2.3 The Rectangle Property
PROOF By Theorem 1, any positive infinitesimal may be chosen for dx. Let us
choose a positive infinite hyperinteger H and let dx = (b — a)/H. Then

dx evenly divides b — a; that is, the interval [a, b] is divided into H sub-
intervals of exactly the same length dx. Then

b
Y mdx =m«He+dx = m(b — a),
b
Y Mdx =M-+H-dx = M(b — a).

For each x, we have m < f(x) < M. Adding up and taking standard parts,
we obtain the required formula.

b b b
Yomdx <Y f(x)dx < Y Mdx,

mb — a) < fbf(x)dx < M - a).

One useful consequence of the Rectangle Property is that the integral of
a positive function is positive and the integral of a negative function is negative:

b

If f(x) > Oon [qa,b], then 0 < m(b — a) < j f(x)dx.
b

If f(x) < O on [q, b], thenff(x)dst(b—a)<O.

The definite integral of a negative function f(x) = —g(x) from a to b is
just the negative of the area of the region above the curve and below the x axis.
This is because

S)dx = —g(x)dx,
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b b
Y f()dx = = g(x)dx,

b b
f f()dx = — f g(x) dx.

(See Figure 4.2.4.)

J)

Figure 4.2.4

THEOREM 3 (The Addition Property)

Suppose f'is continuous on an interval I. Then for all a,b,c in I,

er(x)dx = J;bf(x)dx + ch(x) dx.

This property is illustrated in Figure 4.2.5 for the case a < b < ¢. The
Addition Property holds even if the points 4, b, ¢ are in some other order on the
real line, such as ¢ < a < b.

f(x)

7

Figure 4.2.6 a b c

PROOF First suppose that a < b < ¢. Choose a dx that evenly divides the first
interval length b — a. This simplifies our computation because it makes
b a partition point, b = a + H dx. Then, as Figure 4.2.6 suggests,

c b ¢
Y f(x)dx =) f(x)dx + ) f(x)dx.
a a b

Taking standard parts we have the desired formula

Lc f(x)dx = f eods + ch(x) "
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7,
i

Figure 4.2.6 a b c

To illustrate the other cases, we prove the Addition Property when
¢ < a < b. The previous case gives

ff(x)dx: J.:f(x)dx + Lbf(x)dx.

Since reversing the endpoints changes the sign of the integral,

c ¢ b
- [swax= = [ seaax+ [ feax
b a a
and the desired formula
o b c
J-f(x)dx = f f(x)dx + f f(x)dx
a a b
follows.

The definite integral of a curve can be thought of as area even if the curve
crosses the x-axis. The curve in Figure 4.2.7 is positive from a to b and negative from
b to ¢, crossing the x-axis at b. The integral % f(x) dx is a positive number and the
integral {j f(x)dx is a negative number. By the Addition Property, the integral

[rwax= [ Fdx + [ ) dx

is equal to the area from a to b minus the area from b to c. The definite integral
f¢ f(x)dx always gives the net area between the x-axis and the curve, counting
areas above the x-axis as positive and areas below the x-axis as negative.

The definite integral {% f(¢)dt is a real function of two variables u and v
and does not depend on the dummy variable . If we replace u by a constant a and v
by the variable x, we obtain a real function of one variable x, given by

F(x) = fo(t) dt.

Our fourth theorem states that this new function is continuous.

fx)

Figure 4.2.7



192 4 INTEGRATION

THEOREM 4

Ler f be continuous on an interval I. Choose a point a in I. Then the function
F(x) defined by

F(x) = f (0 de
is continuous on 1.

SKETCH OF PROOF Let ¢ be in I, and let x be infinitely close to ¢ and between
the endpoints of I. By the Addition Property,

Lc f)yde = f:f(f) it + [:f'(t) i,
J:f(t) dr — J:f’(t) dt = f: 1@ dt,

and Fle) — F(x) = ff(t) dt.

This is the area of the infinitely thin strip under the curve y = f(¢) between
t = x and t = ¢ (see Figure 4.2.8). The strip has width Ax = ¢ — x. By the
Rectangle Property, its area is between m Ax and M Ax and hence is infinitely
small. Therefore F(x) is infinitely close to F(c), and F is continuous on [.

() X ¢

m

N _FO = F()
F(e)

Figure 4.2.8 a ¢ b

Our fifth theorem, the Fundamental Theorem of Calculus, shows -that
the definite integral can be evaluated by means of antiderivatives. The process of
antidifferentiation is just the opposite of differentiation. To keep things simple, let ]
be an open interval, and assume that all functions mentioned have domain 1.

DEFINITION

Let f and F be functions with domain 1. If {is the derivative of F, then F is
called an antidevivative of f.
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For example, suppose a particle is moving upward along the y-axis with
velocity v = f(t) and position y = F(t) at time ¢. The position y = F(t) is an anti-
derivative of the velocity v = f(¢). We shall discuss antiderivatives in more detail
in the next section. We are now ready for the Fundamental Theorem.

FUNDAMENTAL THEOREM OF CALCULUS

Suppose f is continuous on its domain, which is an open interval I.

(i) For each point a in I, the definite integral of f from a to x considered as a
function of x is an antiderivative of f. That is,

d( f ) 110 dt) = f(x)dx.

(i) If F is any antiderivative of f, then for any two points (a,b) in I the
definite integral of f from a to b is equal to the difference F(b) — F(a),

fbf(x)dx = F(b) — F(a).

The Fundamental Theorem of Calculus is important for two reasons. First,
it shows the relation between the two main notions of calculus: the derivative, which
corresponds to velocity, and the integral, which corresponds to area. It shows that
differentiation and integration are “inverse” processes. Second, it gives a simple
method for computing many definite integrals.

EXAMPLE 1
(a) Find f’; ¢ dx. Since ¢x is an antiderivative of c,
b
f cdx =cb — ca = cb — a).
a
(b) Find [* x dx. 5x? is an antiderivative of x. Thus
b
J. xdx = Ib* — $a*.
a

The above example gives the same result that we got before but is much
simpler. We can easily go further.

EXAMPLE 2 Find [ x? dx. x3/3 is an antiderivative of x? because

de3) 3%,

dx 3
b b3 3
Therefore f x?dx = T a?'

This gives the area of the region under the curve y = x? between a and b
(Figure 4.2.9).
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Figure 4.2.9

If a particle moves along the y-axis with continuous velocity v = f(r), the
position y = F(t) is an antiderivative of the velocity, because v = dy/dr. The
Fundamental Theorem of Calculus shows that the distance moved (the change in y)
between times t = @ and ¢ = b is equal to the definite integral of the velocity,

b
distance moved = F(b) — F(a) = f f(n)de.

EXAMPLE 3 A particle moves along the y-axis with velocity v = 8t cm/sec. How
far does it move between times r = —1 and r = 2sec? The function
G(t) = 2r* is an antiderivative of the velocity v = 83, Thus the definite
integral is

2
distance moved = f t3dt =22 —2+(—1* =30 cm.
-1

EXAMPLE 4 Find [§ \/? dr (Figure 4.2.10). The function \/? is defined and con-
tinuous on the half-open interval [0, cc). But to apply the Fundamental
Theorem we need a function continuous on an open interval that contains
the limit points 0 and 4. We therefore define

0 fort <0
1) =
f( ) {\ﬁ fort > 0.
This function is continuous on the whole real line. In particular it is con-
tinuous at 0 because if t &~ 0 then f(f) & 0. The function

0 fort <0
Ft) =
0 {%t”z forr >0

Q
o

Figure 4,210
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is an antiderivative of f. Then

4
f Jtdt = F(d) — F(0) = (3-4%% — 2.0%%) = 1§,
0

In the next section we shall develop some methods for finding antiderivatives.
The antiderivative of a very simple function may turn out to be a “new” function
which we have not yet given a name.

EXAMPLE 5 The only way we can show that the function f(x) = /1 + x* has an
antiderivative is to take a definite integral

fx\/l + t* dt.
0

This is a “new” function that cannot be expressed in terms of algebraic,
trigonometric, and exponential functions without calculus.

The Fundamental Theorem can also be used to find the derivative of a
function which is defined as a definite integral with a variable limit of integration.
This can be done without actually evaluating the integral.

2 x
EXAMPLE 6 Lety = Jl/l + t*dt. Then y = —j J1+td,
X 2
and dy = —d(J 1+ dt) = — /1 + x*dx.
2

x2+x 1

EXAMPLE 7 Lety =f dr.

3 241
Let u = x* + x. Then

du S| dy 1
4o a2 .
dx @x+ 1) ¥ L 2+ 1 du w® + 1

By the Chain Rule,

dy dydu 1 2x+1
= 2 = —a—.
(@x + 1) (24 x)? +1

dx  dudx u® + 1

We conclude this section with a proof of the Fundamental Theorem of
Calculus.

PROOF (i) Let F(x) be the area under the curve y = f(¢) from a to x,
F(x) = f [ dt.

Imagine that the vertical line cutting the t-axis at x moves to the right as
in Figure 4.2.11.
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S

F(x) —

a X !

Figure 4.2.11

We show that the rate of change of F(x) is equal to the length f(x) of the
moving vertical line.

Suppose x increases by an infinitesimal amount Ax > 0. Then
X+ Ax
F(x + Ax) — F(x) = f f(t)dt

is the area of an infinitely thin strip of width Ax and height infinitely close to

f(x). By the Rectangle Property the area of the strip is between the inscribed

and circumscribed rectangles (Figure 4.2.12),
mAx < F(x + Ax) — F(x) < M Ax.

Flx + Ax) — F
Dividing by Ax, me FF : )=
X

Since fis continuous at x, the values m and M are both infinitely close to f(x),
and therefore
Fix + Ax) — F
Ax

() ~ f(x)

The proof is similar when Ax < 0. Hence F'(x) = f(x).

F(x+ax)-F(x)

Ax
o)
Sx) M
f(x) N\
a x !

Figure 4.2.12
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PROOF (ii) Let F(x) be any antiderivative of f. Then, by (i),

t{F@)—Jfﬂ0m>=fa)—fa)=o

In Section 3.7 on curve sketching, we saw that every function with derivative
zero is constant. Thus

F(x) — f f®dr = Cy, F(x) = fxf(t)dt+C0
for some constant C,. Then
b a
F(b) — F(a) = (J f®dt + CO) — (j f(yde + CO)
b b
- [r@a—o= [ s,

b
$O F(b) — F(a) = f f(x)dx.

PROBLEMS FOR SECTION 4.2

In Problems 1-14, find an antiderivative of the given function.

1 fx) = 8/ 2 fx) =4/ /x
3 fiey=32+1 4 f(x) = 5x3
5 () = 4 - 3¢2 6 f(z) = 2/
7 fis) =753 8 f@y=12 412
9 fx) = (x—6)? 10 )= (5u+ 1)
11 fo) =y 12 () = 2/x/x
13 S =1 14 Jfo =12t -4
15 If F'(x) = x + x? for all x, find F(1) — F(—1).
16 If F'(x) = x* for all x, find F(2) — F(1).
17 If F/(f) = t'2 for all 1, find F(8) — F(0).
Evaluate the definite integrals in Problems 18-22.
1 2
18 j 2x2 dx 19 f x3 dx
1 -2
-1 4
20 J t2dt 21 f 2/x dx
-2 0
-2
22 J —Sx*dx
-3

In Problems 23-27 an object moves along the y-axis. Given the velocity v, find how far the object
moves between the given times t, and ¢;.

23 v=2t+5, tg=0, t;, =2
24 v=4—1t, h=1 t,=4
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26
27
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r =3, =2, t, =56
=1, 1, =3
r =102 =1 1, =100

(..
1l

w
by
- b
~
S

In Problems 28-32, find the area of the region under the curve y = f(x) from a to b.

28
29
30
31
32

33
34
O 35

O 36

o 37

O 38

y=4— x% a= -2, b=2
y=Jx+2 a= -2, b=2
9x — x2, a=0, b=3
)'=V/.—\‘—.\', a=0, b=1

yo=3x"3 a=1, b=28

¥

If F(t) = t — 1 forall r and F(0) = 2, find F(2).

IfF'(x) =1 — x?forall xand F(3) = 5, find F(—1).

Suppose F(x) and G(x) have continuous derivatives and F'(x) + G'(x) = 0 for all x.
Prove that F(x) + G(x) is constant.

Suppose F(x) and G(x) have continuous derivatives such that F'(x) < G'(x) for all x.
Prove that F(b) — Fla) < G(b) — Gla)

where a < b.

Prove that a function F(x) has a constant derivative if and only if F(x) is linear, i.e., of the
form F(x) = ax + b.

Prove that a function F(x) has a constant second derivative if and only if F(x) has the
form F(x) = ax*+ bx + c.

Suppose that F'(x) = G"(x) for all x. Prove that F(x) and G(x) differ by a linear function,
that is, G(x) = F(x) + ax + b for some real numbers ¢ and b.

4.3 INDEFINITE INTEGRALS

The Fundamental Theorem of Calculus shows that every continuous function f
has at least one antiderivative, namely F(x) = [} f(¢)di. Actually, f has infinitely
many antiderivatives, but any two antiderivatives of f differ only by a constant. This
is an important fact about antiderivatives, which we state as a theorem.

THEOREM 1

Let f be a real function whose domain is an open interval 1.

(1) If F(x) is an antiderivative of f(x), then F(x) + C is an antiderivative
of f(x) for every real number C.

(ii) If F(x) and G(x) are two antiderivatives of f(x), then F(x) — G(x) is
constant for all x in 1. That is,

G(x) = F(x) + C

for some real number C.

Discussion Parts (i) and (ii) together show that if we can find one antiderivative

F(x) of f(x), then the family of functions
F(x)+ C, C = a real number
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gives all antiderivatives of f(x). We sce from Figure 4.3.1 that the graph
of F(x) + C is just the graph of F(x) moved vertically by a distance C. The
graphs of F(x) and F(x) + C have the same slopes at every point x. For
example, let f(x) = 3x2. Then F(x) = x> is an antiderivative of 3x? because

d(x*)
dx
But x3 + 6 and x° — \/5 are also antiderivatives of 3x2. In fact, x> 4+ C is

an antiderivative of 3x? for each real number C. Theorem 1 shows that 3x2
has no other antiderivatives.

3x2.

Figure 4.3.1

PROOF We prove (i) by differentiating,

d(F(x) + C) _ d(F(x)) + E B
dx T dx dx

S+ 0 =f(x)

Part (ii) follows from a theorem in Section 3.7 on curve sketching. If a
function has derivative zero on I, then the function is constant on I. The
difference F(x) — G(x) has derivative f(x) — f(x) =0 and is therefore
constant. We used this fact in the proof of the Fundamental Theorem of
Calculus.

In computing integrals of f, we usually work with the family of all anti-
derivatives of f. We shall call this whole family of functions the indefinite integral of f.
The symbol for the indefinite integral is [ f(x) dx. If F(x) is one antiderivative of f,

the indefinite integral is the set of all functions of the form F(x) + C,, C, constant.
We express this with the equation

ff(x)dx = F(x) + C.

It is an equation between two families of functions rather than between two single
functions. C is called the constant of integration. To illustrate the notation,

f3x2dx=x3 + C.

We repeat the above definitions in concise form.
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DEFINITION

Let the domain of f be an open interval I and suppose f has an antiderivative.
The family of all antiderivatives of f is called the indefinite integral of f and is
denoted by [ f(x) dx.

Given a function F, the family of all functions which differ from F only by a
constant is written F(x) + C. Thus if F is an antiderivative of f we write

When working with indefinite integrals, it is convenient to use differentials
and dependent variables. If we introduce the dependent variable u by v = F(x), then

du = F'(x)dx = f(x)dx.

Thus the equation ff(x) dx = F(x)+ C

can be written in the form J.du =u 4 C.

The differential symbol d and the indefinite integral symbol | behave as
inverses to each other. We can start with the family of functions u + C, form du, and
then form [ du = u + C to get back where we started. Some of the rules for differentia-
tion given in Chapter 2 can be turned around to give a set of rules for indefinite
integration.

THEOREM 2

Let u and v be functions of x whose domains are an open interval I and suppose
du and dv exist for every x in I.

(i) fdu =u + C.

(ii)  Constant Rule Jc du = cf du.

(iii)  Sum Rule fdu +dv = fdu + J‘dv.

”l+l )
(iv) Power Rule f u"dy = 1 + C, where r is rational, 1 # —1,
r

and u > O on 1.

(v) jsin udy = —cosu + C.
(vi) fcos wdu =sinu + C.

(vii) f etdu=¢e"+ C.
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1
(viii) f;du =1Inju|+ C (u # 0).

Discussion The Power Rule gives the integral of u” whenr # — 1, while Rule
(viii) gives the integral of 4" when r = —1. When we put u = f(x) and
v = g(x), the Constant and Sum Rules take the form

Constant Rule fcf(x) dx = cf f(x)dx.

Sum Rule f(f(x) + g(x)) dx = ff(x) dx + fg(x) dx.

In the Constant and Sum Rules we are multiplying a family of functions
by a constant and adding two families of functions. If we do either of these
two things to families of functions differing only by a constant, we get another
family of functions differing only by a constant. For example,

13x* + C) =21x* + 7C = 21x* + C’
is the family of all functions equal to 21x* plus a constant. Similarly,

BS/x+C) +(x—/x +D)=5x +2/x + (C+ D)= 5x + 2/x + C
is the family of all functions equal to 5x + 2\/; plus a constant.

PROOF OF THEOREM 2

(i) This is just a short form of the theorem that u + C is the family of all
functions which have the same derivative as u.

(i) We have ¢ du = d(cu), whence
fcdu=fd(cu)=cu+€=c(u+C’)=cfdu.
(ii)) du + dv =d(u + v),
Jdu+dv=jd(u+v)=u+v+C=fdu+jdv.

r+1 " r
d(u )=(7+1)udu=u’du,
r+1

41
r+1
jlt’du: 4 + C.
F+1

(iv)

Rules (v)-(viii) are similar. Only the last formula, (viii), requires an explana-
tion. The absolute value in In|u| comes about by combining the two cases u > 0
and u < 0. Whenu > 0, u = [u| and
1
diln |u]) = d(Inu) = Edu.

When u < 0, In u is undefined, but ju| = —w and In |u| = In (—u). Thus

dinjul) =d(n(—u)) = — %d(—u) = %du.
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Thus, in both cases, when u # 0,

i
d(In |u|) = —du,
U
1
J‘fdu=ln|u|+C.
U
EXAMPLE 1 f(Zx_l + 3sinx)dx = 2In{x| — 3cosx + C.

We can use the rules to write down at once the indefinite integral of any
polynomial.

EXAMPLE 2 J(4x3 —6x2 4 2x + Ddx =x*—-2x3 4+ x2 4+ x + C.

3 3 2
EXAMPLE 3 J(;+ \/E) dx = — _+_3_x3/z +C
X

Indefinite integration is much harder than differentiation, because there are
no rules for integrating the product or quotient of two functions. It often requires
guesswork. The short list of rules in Theorem 1 will help, and as this course proceeds
we shall add many more techniques for finding indefinite integrals.

dx I + x
EXAMPLE 4 Show that [ = [— .
vl T+ 070 - 07 /1 —tC

Our rules give no hint on finding this integral. However, once the answer
is given to us we can easily prove that it is correct by differentiating,

J 1+ x
I —x 41+ )1 — x)" V)

dx dx
= (L 4+ )= (=D = 072 + (1 =072+ 07
= (1 + )72 = x)7¥20(1 + x) + 31 = x)]

1
S+ )M = xR

Here is a warning that may prevent some common mistakes.
Warning: The integral of the product of two functions is not equal to the
product of the integrals. The same goes for quotients. That is,

- Junr - [ ][ o).
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For example,

x?[x?
Wrong : fx(x + )dx = (fxdx)(f(x + Ddx|= 7( 5 + x) +C
x*  x?
= 4 + 7 + C
x3  x?
Correct: .fx(x + Ddx = J(xz + x)dx = T + 5 + C.
y ~fudx
Wrong: Zdx =2
v fvdx
For example,
~[(x + Ddx
Wrong : X+ 1dx = = G + x +C
NES Gx3?
f\/;cdx
_3/x 3 Lc

g " 2/x
Correct: Ji\;—ldx = f(\/; + %) dx = 3x3?% 4 Zﬁ + C.
X

The indefinite integral can be used to solve problems of the following type.
Given that a particle moves along the y-axis with velocity v = f(¢), and that at a
certain time t = t its position is y = y,. Find the position y as a function of ¢.

EXAMPLE 5 A particle moves with velocity v = 1/t2, t > 0. At time t = 2 it is at
position y = 1. Find the position y as a function of t. We compute

1 1
J‘Udt:J‘t‘Zdtz—?-}—C

Since dy/dt = v, y is one of the functions in the family —1/t + C. We can
find the constant C by settingt =2 and y = 1,

1 1

Then the answer is

The next theorem shows that in such a problem we can always find the answer
if we are given the position of the particle at just one point of time.
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THEOREM 3

Suppose the domain of { is an open interval I and f has an antiderivative. Let
P(xq,yo) be any point with x, in I. Then f has exactly one antiderivative
whose graph passes through P.

PROOF Let F be any antiderivative of f. Then F(x) + C is the family of all anti-
derivatives. We show that there is exactly one value of C such that the
function F(x) + C passes through P(x,, yo) (Figure 4.3.2). We note that all
of the following statements are equivalent:

(1) F(x) + C passes through P(xg, yo).
(2) Flxp) + C = yg.
(3) C =yy— Flx)

Thus y, — F(x,) is the unique value of C which works.

y /\/
/\%
Plxg, yo)

Figure 4.3.2

The Fundamental Theorem of Calculus, part (ii), may be expressed briefly
as follows, where fis continuous on I.
If [f(x)dx = F(x) + C, then

b
f f(xydx = F(b) — Fl(a).
For evaluating definite integrals we introduce the convenient notation

b
F(.\'):l = F(b) — Fla).

a

It is read “F(x) evaluated from a to b.”
The Constant and Sum Rules hold for definite as well as indefinite integrals:

b b
Constant Ruie j cof (x)dx = cf f(x)dx.

b b b
Sum Rule f (f(x) + g(x)dx = f f(x)ydx + fg(x) dx.

The Constant Rule is shown by the computation
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b b
f cf (x)dx = cF(b) — cF(a) = ¢(F(b) — F(a)) = ¢ f f(x)dx.
The Sum Rule is similar.

EXAMPLE 6 Evaluate the definite integral of y = (1 + 1)/t> from t =1 to t =2
(see Figure 4.3.3).

2 2
J- lttdt=f(t_3+t_2)dt
1 ! 1
2 s 2 R [_22 Z—12
= |t dt+ft‘ dt="_| 4 —
Jas [ras Sl )

AR 11y 3 1 7
“\(=2)-4 (Tz)—-1>+(——z‘_—1)—§+z‘§'

Thus the area under the curve y = (1 + )/’ fromt = 1 tot = 2is &

¥y

._...
[\S]
-~

Figure 4.3.3

EXAMPLE 7 Find the area of the region under one arch of the curve y = sin x
(see Figure 4.3.4).

One arch of the sine curve is between x = 0 and x = n. The area is the
definite integral

ki m
f sin x dx = —cosx]

0 ]
= —cosmw—(—cosQ)= —(—1) —(=1)=2.

The area is exactly 2.

y

y=sinx

’ ! \./ '

Figure 4.3.4
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EXAMPLE 8 Find the area under the curve y = —2x ' fromx = —5tox = — 1.
(See Figure 4.3.5.)

The area is given by the definite integral
-1
J —2x"1dx.
=5
First compute the indefinite integral
f —2x"ldx = —ZJX_ldx = —2In|x|+ C.

Now compute the definite integral.

-1
J —2x " tdx
-5

-1

—21In |x|}

= 2n}—1]—In|—=5])= —=2(In1 — In 5)
=2In5 ~ 3.219.

-5

y = —2x"

Figure 4.3.5

This example illustrates the need for the absolute value in the integration rule
fx_ldx =In|x|+ C

The natural logarithm In x is undefined at x = —5and x = —1, but In | x| is defined
for all x # 0. The absolute value sign is put in when integrating x~! and removed
when differentiating In [ x|.

EXAMPLE 9 In computing definite integrals one must first make sure that the
function to be integrated is continuous on the interval. For instance,

1 1 X_l 1
Incorrect : J —dx = —] =—1—-(—(=1)= -2

X -1 94
This is clearly wrong because 1/x? > 0 so the area under the curve cannot be
negative. The mistake is that 1/x* is undefined at x = 0 and hence the
function is discontinuous at x = 0. Therefore the area under the curve and
the definite integral
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are undefined (Figure 4.3.6).

e Fx)
§ (1, 1)
\ \ a, -1
-1 0 1 * F(X)=5_-—ll
f()6)=)%2

Figure 4.3.6

PROBLEMS FOR SECTION 4.3

Evaluate the following integrals.

1 f(l + 2% + 3x%)dx 2 f(2x2—6x+9)dx
3 fuzﬂ 365+ 2% + Ddt 4 f(s +y2— 4y Yy
5 f(rl/l + )y 6 f(zylf3 3284y

7 j(Zx — 3)?dx 8 J.(x — 2)(2x + 1)dx

9 f ( + 1/z dz 10 f (z - 1)z dz
1 j 5cos x dx 12 f (sin x + cos x) dx
13 f =T L ix 14 f 2—”2%‘?@—6 dx
15 f(l +x Y2 dx 16 J3e"dx

17 J G+ /0@ -2 /nd 18 f 3; +Sl ds

19 f%—yﬁdy 20 j(3 — x)(1 + 4x?)dx
21 f(axz + bx + ¢)dx 22 J.(a3x3 + a,x* 4 ayx + ag) dx
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2 1
23 J (2x — 4x? + x%)dx 24 J. (1 4+ x% + 3x%)dx
-2 [¢]
1 1
25 f (1 + x2 4+ 3x%)dx 26 f e dx
.y -
n 2
27 f €oSs X dx 28 J cos X dx
0 0
2 5
x—1
29 3%~ dx 30 J T
1 2 X
-
31 f — dx
X

In Problems 32-36, find the position y as a function of r given the velocity ¢ = dy/dr and the value
of y at one point of time.

32 v =2r+3, y=0 when =0
33 v=4t—1, y=2 when =0
34 v =34, y=0 when = —1
35 r=2sint, y=10 when t=0
36 =31 y=1 when =1

In Problems 37-42, find the position y and velocity ¢ as a function of r given the acceleration ¢ and
the valuesof pand vatr =0Qort = 1.

37 a=t1t, t=0 and y=1 when =0
38 a= —-32, t=10 and y=0 when =0
39 a = 3t%, tr=1 and y=2 when =0
40 a=1-— \/'?, v=-2 and y=1 when 1=0
41 a=1"3 t=1 and y=0 when =1
42 a = —sint, vr=0 and y=4 when t=0
43 Which of the following definite integrals are undefined?
| 21
(a) j —dx (b) J —dx
X L X
o o _
(c) J —rdy (d) AR
1 -1
2 , 2
(e) f V4= xtdx (f) J. Xt —ddx
3 -2
1 1 -1
(g) J‘,l ﬁd“ (h) J‘72 P Idr
2 _ 3
(i) f Jit = ld (i f |x — 1] dx
2 -3
1 n
(k) j tan x dx Q) J‘ tan x dx
1 0
44 Find the function f such that /" is constant, f(0) = f'(0) and f(2) = f'(2).
45 An object moves with acceleration a = 6r. Find its position y as a function of 1, given
that y = I whent =0and y = 4 whent = 1.
46 Find the function /i such that h” is constant, #(1) = 1, h(2) = 2. and h(3) = 3.
0O 47 Suppose that F"(x) exists for all x. and let {x,.y,) and (x,.y,) be two given points.

Prove that there is exactly one function G(x) such that
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G(xo) = yo
Gx))=n
G"(x) = F'(x) for all x.
0O 48 Assume that F"(x) exists for all x, and let (x,, y,) and (x,, y,) be two points with x, # x,.

Prove that there is exactly one function G(x) such that G"(x) = F"(x) for all x, and the
graph of G passes through the two points (x,, y,) and (x,, y,).

4.4 INTEGRATION BY CHANGE OF VARIABLES

We have seen that the sum, constant, and power rules for differentiation can be turned
around to give the sum, constant, and power rules for integration. In this section we
shall show how to make use of the Chain Rule for differentiation in problems of
integration. The Chain Rule will lead to the important method of integration by
change of variables. The basic idea is to try to simplify the function to be integrated
by changing from one independent variable to another.

If F is an antiderivative of f and we take u as the independent variable, then
[ f(u) du is a family of functions of u,

ff(u) du = F(u) + C.

But if we take x as the independent variable and introduce u as a dependent variable
u = g(x), then du and { f(u) du mean the following:

du = g'(x) dx, jf(u) du = ff(g(x))g'(x) dx = H(x) + C.

The notation [ f(u)du always stands for a family of functions of the independent
variable, which in some cases is another variable such as x. The next theorem can be
used as follows. To integrate a given function of x, properly choose a new variable
u = g(x) and integrate a new function with respect to u.

DEFINITION

Let I and J be intervals. We say that a function g maps J into I if for every
point x in J, g(x) is defined and belongs to I (Figure 4.4.1).

y

g(x)

J

Figure 4.4.1 g maps J into [
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THEOREM 1 (Indefinite Integration by Change of Variables)

Suppose I and J are open intervals, f has domain I, g maps J into I, and g is
differentiable on J. Assume that when we take u as the independent variable,

jf(u) du = Fu) + C.

Then when x is the independent variable and u = g(x),

ff(u) du = F(g(x)) + C.

PROOF Let H{(x) = F(g(x)). For any x in J, the derivatives g'(x) and F'(g(x)) = f(g(x))
exist. Therefore by the Chain Rule,

H'(x) = F(g(x)g'(x) = f(g(x)g'(x).
It follows that

ff(g(x))g'(x) dx = H(x) + C = F(g(x)) - C.

So when u = g(x), we have
Su)ydu = fg(x))g'(x) dx, ff(u) du = F(g(x)) + C.

Theorem 1 gives another proof of the general power rule

ll"+1
fu"du = + C, n# -1,
n+1

where u is given as a function of the independent variable x, from the simpler power
rule

xn+1
fx”dxz + C, n# -1,
n4 1

where x is the independent variable.

EXAMPLE 1 Find f(dx + 1)° + (4x + 1)> + (4x + 1)dx. Let u = 4x + 1. Then
du = 4dx, dx = 1 du. Hence

f(4x + 1P+ (dx + 1)2 + (dx + Ddx

I Hut W W2
= 342 dy = -
f(u us 4 u) 4(11 ] 4+ 3 + 5 + C
1 (4x + D* x4+ 172 (dx 4+ 1)?
~4[ Tttt + C.

-1
EXAMPLE 2 Find | ———— dx.
n sz(l + 1/x)? X

Letu =1+ 1/x. Then du = —1/x?dx and thus
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—1 1
Ll ix=—du
x2(1 + 1/x)? T

So J L 4 f L=y c I ¢
—_—— X = _— = — = - — .
x3(1 + 1/x)? u? -1 1+ 1/x

In a simple problem such as this example, we can save writing by using the
term 1 + 1/x instead of introducing a new letter u,

-1 _ 1 N 410!
J'xzv(l + 1/x)? dx = f(l + 1/x)? d(1 + x) N —1 +C

In examples such as the above one, the trick is to find a new variable 1 such
that the expression becomes simpler when we change variables. This usually must
be done by an “educated” trial and error process.

One must be careful to express dx in terms of du before integrating with

respect to u.

EXAMPLE 3 Find [(1 4+ 5x)*dx. Let u = 1 + 5x. For emphasis we shall do it
correctly and incorrectly.

Correct : du = 5dx, dx = Ldu,
1 ud 1+ 5x)°
1 5 2 d - f 2 "d = — - @° s
f(+X) x u? 2 du 15+C s +C
3 3
Incorrect : J(l + 5x)%dx = Juz dx = % +C= @ + C.
3 5 u? (1 + 5x)°
Incorrect: (14 5x)dx = | udu = £ + C = s +C
EXAMPLE 4  Find [x*/2 — x?dx. Letu = 2 — x%, du = —2x dx, dx = du/(—2x).

We try to express the integral in terms of u.

d 1
Jx3,/2—x2dxzjx3ﬁ g =J.—§x2 u du.
—2x
Since u = 2 — x2, x> = 2 — u. Therefore
f —%xz\/;du = f -2 - u)\/; du = J —\/; + 3432 du

= —y32 1.5 4 C
— _%(2 _ x2)3/2 + %(2 _ x2)5/2 + C.

We next describe the method of definite integration by change of variables. In
a definite integral

fb h(x) dx

it is always understood that x is the independent variable and we are integrating
between the limits x = a and x = b. Thus when we change to a new independent
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variable u, we must also change the limits of integration. The theorem below will
show that if u = ¢ when x = g and v = d when x = b, then ¢ and d will be the new
limits of integration.

THEOREM 2 (Definite Integration by Change of Variables)

Suppose I and J are open intervals, f is continuous and has an antiderivative
on I, g has a continuous derivative on J, and g maps J into 1. Then for any two
points a and b in J,

g(b)

b
f fleNge)dx = [ fdu.

gla)

PROOF Let F be an antiderivative of f Then by Theorem 1, H(x) = F(g(x)) is an
antiderivative of h(x) = f(g(x))g'(x). Since f, g, and g’ are continuous, h is
continuous on J. Then by the Fundamental Theorem of Calculus,

g(b)

]
f f(g(x)g'(x)dx = H(b) — H(a) = F(g(b)) — F(g(a)) = Slu)du.

gla)

EXAMPLE § Find the area under the line y = 1 4+ 3x from x = Oto x = 1. This can
be done either with or without a change of variables.

Without change of variable: [(1 + 3x)dx = x + 3x3/2 + C, s0
! x| 3.12 3.07 5
IXYdx=x+—| =11 — |0 =_.
J;(1+ x) dx \+2:|0 (+ 2) (+ 2) >

With change of variable: Let u =1 + 3x. Then du = 3dx, dx = {du.
Whenx =0,u=1+30=1.Whenx=1L,u=1+3:1=4

‘o 142]4 16 1 15 5

1
1 Jdx = . — = — = .
L (I + 3x)dx f us—du 1 ¢ G 3 5

13 6

Example 5 shows us that [§ (I + 3x)dx = [} (/3) du; that is, the areas
shown in Figure 4.4.2 are the same.

y=1+3x

/O i X i A u

Figure 4.4.2
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2x
T (x2-3)2

Figure 4.4.3

EXAMPLE 6 Find the area under the curve y = 2x/(x? — 3)? from x = 2 to x = 3
(Figure 4.4.3).

Let u=x? — 3. Then du = 2xdx. At x =2, u=2?>—-3=1. At x =3,
u=23%~13=6. Then

3 2x 51 11e 1 5
2 gx=| Sdu= -2 =122
L (x* — 3)? x J;uz . ul 6 6

EXAMPLE 7 Find [(./1 — x? x dx. The function ,/1 — x* x as given is only defined
on the closed interval [ — 1, 1]. In order to use Theorem 2, we extend it to the
open interval J = (— o0, o0) by

hex) = 0 ifx< -1 or x>1,
MEV /N —Ex f-l<x<l.

Let u =1 — x? Then du = —2xdx, dx = —du/2x. At x=0, u = 1. At
x = 1,u = 0. Therefore
1 0 0
f \/l—xzxdx:J‘ \/;-(—%du)zj
0 1 1
1 1
=%j \/;du=%-%u3’2] —1-0=1.
0 0

We see in Figure 4.4.4 that as x increases from 0 to 1, u decreases from 1 to 0,
so the limits become reversed. The areas shown in Figure 4.4.5 are equal.

Figure 4.4.4 u=1—x?
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y v

/r)l\/l—x?xdx O -— 1

/O—IEﬁdu
1

Figure 4.4.5
We can use integration by change of variables to derive the formula for the

area of a circle, A = nr?, where r is the radius. It is easier to work with a semicircle
because the semicircle of radius r is just the region under the curve

y=.Jro—-x° —r<x<r

To start with we need to give a rigorous definition of 7. By definition, = is the area of
a unit circle. Thus 7 is twice the area of the unit semicircle, which means:

DEFINITION
= 2]1 \/1_~—_x2dx.
-1
The area of a semicircle of radius r is the definite integral
j L P xldx.
To evaluate this integral we let x = ru. Thendx = rdu. Whenx = +r,u = +1. Thus
f \/ﬁd,\‘ = J.l mrdu = Jd r"\/Tﬁdu
- -1 -1
1

.2 [ — idu=s2"
If_l whdu = 1%-3

Therefore the semicircle has area nr2/2 and the circle area 7r? (Figure 4.4.6).

. to3x? -
EXAMPLE 8 Find f ———————dx.
o 1+ /x—x3
Let u=x — x> Then du = (1 —3x%)dx. When x =0, u=0—-0%=0.
Whenx =1,u=1-— 13 = 0. Then

J‘l 3x2 -1 dY—J.O du ~0
ol 4+ /x—x¥ 0 1+\/E ‘

As x goes from O to 1, u starts at 0, increases for a time, then drops back to 0
(Figure 4.4.7).
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[N

~1 1 u
HT = / zz / /1 —ud
Figure 4.4.6
flx) u
é u=x—x?3
0 1 x -1 o 1 X
Figure 4.4.7

We do not know how to find the indefinite integrals in this example. Neverthe-
less the answer is 0 because on changing variables both limits of integration
become the same. Using the Addition Property, we can also see that, for

instance,
3 3x? -1 to3xr -1
f x’_dxz_f X -1
2

o 14 /x—x3 al 4 J/x—x3

PROBLEMS FOR SECTION 4.4

In Problems 1-90, evaluate the integral.

1
S S 2 3+ 1dy
1 f(2x+1)2dx f\/TT)
3 f(3—4z)5 dz 4 f (1 = x¥ dx
X
5 fzr 1—¢2dt 6 J——dx
J2x2 4+ 1
7 Jx(4+ 5x2)? dx 8 _
i (2 + 3v%)?
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11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

4 INTEGRATION
Jsin(}\{]d,\'
~[63in(4x — 1)dx
fsinf)cos&d()

j cos®0 sin § d

fx sin(x? + 1)dx

J sin(In x) i

X

J‘«/sintcosrd[

f e** dx

fae"' + be “dx

fxe"z dx
fbe""' dx

f e ®cosh do
fx j_ 2dx
j%dx
J.x i ldx

1
——
fﬁ(lhﬁ) :
3tr+ 4
5—1t

fx{/x“’ + 5dx

f W2y

dr

f-—”—du
N

1
ds
jV’SS +2
1

f—;d,\‘
X2/ + Ux

J-x’:‘ 3+ 5v¢ 2dx

10

12

14

16

18

20

22

24

26

28

30

32

34

38

40

42

44

46

48

S0

52

54

fcos(4 — 2x)dx

f asinx + bcosxdx
J sin?0 cos 0 df
fsin(%)) + cos(30)do
J. x? cos(x3) dx

f e' cos(e') dt

J Jteos(t/n)dr

J3el"" dx

J(e"‘+1)2dx
fxel"xzdx
Jeax+bdx
fe'«/l + ée'dt
2
J’3—4xd'\
X
J.r‘2+ ldx
1
jxl(l mEySLL
1 -2t
jl +2td[
2
X
J"Y‘3+2dx
f 1
—_——dx
2x — /1 - 2x

S
@2_!_ 1)3(1‘

f(4x+ D/2x% + x + Sdx

J‘«/l — 5zdz
1
— .y
J YA~ 4/y)?

f I
——dx
\/.\'(] + 2. /x)
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57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

G-V,
\/} dx
J2+1/zdz

22
X2
j—dx
JxP+ 4
X3 d
J-«/l-l—x4 ¥
ft./t+1dt

f(2s +6)1 —s5)"*ds

¥
Jme
J.*xvdx
Jax + 1
J-u 1 — 3udu
f 4x — 1
Vax 4+ 1

I—l _x4dx
5

sin@
1+ cos@

J‘ln_xd

4.4 INTEGRATION BY CHANGE OF VARIABLES

88

90

In Problems 91-108, evaluate the definite integral.

91

93

95

97

/3
J sinf) do

0

1
f e* dx
-1

4
1
—d
1 2x *

rrlz
f sinf cos8 df

0

| _W}\ﬂ a

1
foy+nﬂ’
2

X
—
J:/4x3 +1 *
J‘x3\/2 — x*dx

s
f(s+2)3ds
‘[))3, /4 + )72 dy

x5
A=
'[\/2+\/;du

1
— >
f(2ﬁ+3)3 ¥

2
j X dx

Jx—1
y3
fz_yzd)

u
[

1

d
.[1-{»\/; >

J‘e" + cosxd
e* 4 sinx

J. tané do

J‘ 2x + 1 dx

x4+ x+1
sinf — cosf

Jsin@ + cosf

1
f dx
xInx

n/4
f cos(260) do

—n/4
1
f xe*” dx
(1]
i
X
J;) 2.1 + 1dx

2n
f asin® + bcos do
0

217



218

4 INTEGRATION

2 1
|
99 S Ldx 100 f NN
L e , @x+ 3P
4

1

101 f (2x + 12 dx 102 f 2+ 3) 2 di

0 0

1 5 2
103 f (1 +6x)*dx 104 ——dt

0 1 /3t + 1

2 1 .2
105 jv 27 ¥ 9dv 1 f o dx

. v v 06 LGy dx

1 X 5
107 f s dx 108 f x(x? + 2)13 dx

42—x /&
109 Find the area of the region below the curve y = 1/(10 — 3x) from x =1 to x = 2.
110 Find the area of the region under one arch of the curve y = sin x cos x.
111 Find the area of the region under one arch of the curve y = cos (3x).
112 Find the area of the region below the curve y = 4x,/4 — x? between x = 0 and x = 2.
113 Find the area below the curve y = (1 + 7x)%® between x = O and x = 1.
114 Find the area below the curve y = x/(x* + 1) between x = O and x = 3.

1 —
115 Evaluate:J. le—x_dx
ol +Yx—x

1
0 116 Evaluate: J 2x /(1 — x3)% + 1dx
-1

4.5

117 Let f and g have continuous derivatives and evaluate | /"(g(x))g’(x) dx.

118 A real function f is said to be even if f(x) = f(—x) for all x. Show that if f is a continuous
even function, then 2, f(x)dx = [4 f(x) dx.

119 An odd function is a real function g such that g(—x) = —g(x) for all x. Prove that for
a continuous odd function g, {*, g(x) dx = 0.

AREA BETWEEN TWOQ CURVES

A region in the plane can often be represented as the region between two curves.
For example, the unit circle is the region between the curves

y=—/1 — x? y=Jl—x2, —-1<x<1

shown in Figure 4.5.1. Consider two continuous functions fand g on [a, b] such that
f(x) < g(x) for all x in [a, b]. The region R, bounded by the curves

y=f(x), y=gkx), x=a x=Db,

is called the region between f(x) and g(x) from a to b. If both curves are above the
x-axis as in Figure 4.5.2, the area of the region R can be found by subtracting the
area below ffrom the area below g:

b b
arcaof R = f g(x)dx — J f(x)dx.

It is usually easier to work with a single integral and write

b
area of R = f (g(x) — f(x))dx.



4.5 AREA BETWEEN TWO CURVES

y

y=VI1-x gx) /
7

R

y

-

f&)

8 +.______

Figure 4.5.1 Figure 4.5.2

In the general case shown in Figure 4.5.3, we may move the region R above the
x-axis by adding a constant ¢ to both f(x) and g(x) without changing the area, and
the same formula holds:

b b
area of R =f(g(x) + c)dx — f(f(x)-l—c)dx

b
- j (8(x) — /(x)) dx.

yx) + ¢

C
y
foo) +¢
8() / g) 3
/R [
7 e
Figure 4.5.3

To sum up, we define the area between two curves as follows.
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DEFINITION

If f and g are continuous and f(x) < g(x) for a < x < b, then the area of the
region R between f(x) and g(x) from a to b is defined as

b
f (8(x) — f(x) d.

EXAMPLE 1 Find the area of the region between the curves y = 4x2 — land y = x
from x =1 to x = 2. In Figure 4.5.4, we sketch the curves to check that
Ix? — 1 < xforl < x <2 Then

2 2
A= fx—(%xz—l)dxzﬁxl—%ﬁ—l-x} = £,
1

1

£

Vi

N

h

]

{

b
)y 2 )
|

y=5x"—1
Figure 4.5.4 -

EXAMPLE 2 Find the area of the region bounded above by y = x + 2 and below
by y = x°.
Part of the problem is to find the limits of integration. First draw a sketch

(Figure 4.5.5). The curves intersect at two points, which can be found by
solving the equation x + 2 = x2 for x.

x?—(x+2)=0, (x + Dx —2)=0,

x=—1 and x=2.
2

2
Then A :f (x +2 — x¥dx = 3x® + 2x —éxﬂ = 41,
=1

-1

>
[ S U .

Figure 4.5.5
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EXAMPLE 3 Find the area of the region R bounded below by the line y = —1 and
above by the curves y = x* and y = 2 — x. The region is shown in Figure
4.5.6.

(-1, -1)
Figure 4.5.6

\(3,—1)

This problem can be solved in three ways. Each solution illustrates a different

trick which is useful in other area problems. The three corners of the region
are:

(-1, =1, where y = x® and y = —1 cross.
(3, —1), where y =2 — xand y = —1 cross.
1, 1), where y = x* and y = 2 — x cross.

Note that y = x* and y = 2 — x can cross at only one point because x* is
always increasing and 2 — x is always decreasing.

FIRST SOLUTION Break the region into the two parts shown in Figure 4.5.7:

Rifromx = —1tox =1,and R, from x = 1 to x = 3. Then
area of R =

area of R; + area of R,.

1 1
f x3—(—1)dx=%x4+x]
-1

area of R,

= =2
-1

3 3
area of R, =f 2—x)—(=Ddx = 3x—%x2}
1

=2
area of R=2+ 2 = 4.

1

R,

(3, — 1\
First solution
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SECOND SOLUT/ON Form the triangular region S between y = —land y =2 — x

from —1 to 3. The region R is obtained by subtracting from S the region S,
shown in Figure 4.5.8. Then

area of R = area of S — area of S;.

3
2—x)—(=ldx =3x — %xz} = 8.
1

-1

w

area of § = f

i
(2—x)—x3dx=2x—§xz—ix“:| =4

-1

1
area of §| = j

areaof R =8 — 4 = 4,

\ S
-~
00
Fi 4.5.8 o S d soluti \

THIRD SOLUTION Use y as the independent variable and x as the dependent
variable. Write the boundary curves with x as a function of y.

y=2-x becomes x = 2 — y.
yo=x3 becomes x = p!73,
The limits of integration are y = —1 and y = 1 (see Figure 4.5.9). Then

1

i
A= f (2 —y)— ydy =2y — 1y — %y‘”{| = 4.
-1

-1

As expected, all three solutions gave the same answer.

»

PN PRS-

’

-1
Figure 4.5.9 / Third solution




4.5 AREA BETWEEN TWO CURVES

PROBLEMS FOR SECTION 4.5

In Problems 1-43 below, sketch the given curves and find the area of the region bounded by

them.

(Y-J- RN B N I R L

A I i T
S 0 s WN =S

21

22
23

25
26
27
28
29
30
31
32

33

35

37
38

fx)=0, gx)=5x—x% 0=x<4

) =+/% gx)=x% 1<x<4
fo=x/1—x, g=1 —I1<x<1
y=x—-2, y=3"3 0<x<1

y=\/3—c, y=/x+1 0=<x=<4
y=\/x—2ﬁ—x, y=\/xT+—1+x, -0<x<1
The x-axis and the curve y = —5 + 6x — x?
The x-axis and the curve y = 1 — x*

The y-axis and the curve x = 25 — *

The y-axis and the curve x = y(8 — ¥)

y = COs X, =2cosx, —wm2<x=<mw/2
y=sinxcosx, y=1 0=<x<a/2

y= —sinx, y=sinx, 0<x<nxn
y=sinx, y=cosx, 0<x < n/4
y=sinxcosx, y=sinx, 0<x<nx
y=sin’?xcosx, y=sinxcosx, 0<x<mn?2
y=x, y=¢€, 0<x=<2

y=e*F y=¢, 0<x<2

y=—¢€, y=¢, —1=<x=<1
y=xe", y=e 0=<x<1

1
[ — = < <
y=%x771 7Y I, 0=x<2
_ 1 _ 1 0<x<2
Y=o Y Txx1 =x=

y=1/x, y=x, 1<x<2
X 1

=217 =3, 0=<x<=1
) =x"2, glx)=x*?
y=x2—-2x, y=x-—2
y=x*-2x% y=2x*+12
y=x*-1, y=x>—x
y=xYx>+ 1), y=1/"+1)

y=x3/1-x% y=x/1—x% 0<x

y=2x% y=x>+4

y

x=y%, x=2-)

\/)_c + \/} = 1 and the x- and y-axes
x2y =4, x*+y=>5 (first quadrant)
y=x\/;ﬁ, y = 2x

y=0, y=x+x+2, x=2
y=2x+4, y=2-3x y=—X
y=x>—1, y=(x-17 y=(x+1?

223
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39 y:\/\'. y=1 y=10—-2x

40 y=x—2 y=2-x y=./x

41 y=—xo o p=Jx r=3x-2

42 y=—=2, y=x14x x+4+y=7

43 p=x% y=2xv"2 y=2x"7 (first quadrant)

44 Find the area of the ellipse x2/a®> + y*/b? = 1. Use the fact that the unit circle has area 7.

45 Sketch the four-sided region bounded by the lines y =1, y=1x, y=2x and
y = 6 — x and find its area.

46 Find the number ¢ > 0 such that the region bounded by the curves y = x,y = —2x,and
x = ¢ has area 6.

47 Find the number ¢ > 1 such that the region bounded by the curves y = 1, y = x~2,
and x = c has area 1.

48 Find the number ¢ such that the region bounded by the curves y = x? and y = ¢ has
area 36.

49 Find the number ¢ > 0 such that the region bounded by the curves y = x* and y = ¢x
has area 9.

50 Find the value of ¢ between — [ and 2 such that the area of the region bounded by the
lines y = —x, y = 2x,and y = | + ¢x is a minimum.

51 Find the value of ¢ such that the line y = ¢ bisects the region bounded by the curves

y=x>andy=1.
52 Find the value of ¢ such that the line y = ¢x bisects the region bounded by the x-axis
and the curve y = x — x2,

NUMERICAL INTEGRATION

In numerical integration, one computes an approximate value for the definite
integral rather than finding an exact value. In this section we shall present two
methods of numerical integration, called the Trapezoidal Rule and Simpson’s Rule.

The Fundamental Theorem of Calculus gives us a method of computing
the definite integral of a given continuous function f from a to b. The method is to
find, by trial and error, an antiderivative F of f and then to use the equation

b
f JS@ydt = F(b) — F(a).

When the method works, it provides an exact value for the integral. However, the
method succeeds only if the antiderivative happens to be a function that can be
described in a simple way. For many integrals one cannot find a formula for the
antiderivative, and the method fails. Such integrals can still be computed approxi-
mately using numerical integration.

The Trapezoidal Rule and Simpson’s Rule can always be applied and do
not use the antiderivative. They are easy to carry out on a computer or hand calculator.
We already discussed one method of approximating the definite integral in Section 4.1,
the Riemann sum. The Trapezoidal Rule is a modified form of the Riemann sum,
which gives a much closer approximation for a given amount of effort. Simpson’s
Rule is a further modification that gives still better approximations.
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Let f be a continuous function on an interval I, and let a < b in I. By
definition, for each positive infinitesimal dx the definite integral

J;b f(x)dx

is the standard part of the infinite Riemann sum
b
> () dx,
b b
J f(x)dx = st[z f(x) dx].

In Section 4.1, examples were worked out to show that the finite Riemann sums
become very close to the definite integral when Ax is smali; that is, the finite Riemann
sums approximate the definite integral. In Section 4.2, we saw that the definite
integral is the limit of the finite Riemann sums as Ax — 0*:

b b
j f(x)dx = Aling+ Z f(x) Ax.

The Riemann sum, which is a sum of areas of rectangles, is a rather inefficient
approximation of the definite integral. We can usually get a much closer approxi-
mation with the same amount of work by adding up areas of trapezoids instead of
rectangles, forming the Trapezoidal Rule suggested by Figure 4.6.1. The Trapezoidal
Rule also provides a formula, called an error estimate, which tells us how close the
approximation is to the exact value of the definite integral.

Riemann Sum Trapezoidal Approximation

Figure 4.6.1

Choose a positive integer n and divide the interval [qg, b] into r subintervals
of equal length Ax = (b — a)/n. The partition points are a = Xg, X, X3,...,X, = b.
The trapezoidal approximation is the area of the region under the broken line con-
necting the points
(Xo»f(xo))a (xl ’f(xl))s crey (xrnf(xn))'
Since all of these points lie on the curve y = f(x), the broken line closely follows the

curve. So one would expect the area of the region under the broken line to closely

approximate the area under the curve.
Consider a single subinterval [x,,, x,,, ;] of width Ax. The region under the

line segment connecting the two points

(xm’ f(xm))5 (xm+ 1> f(xm+ 1))
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is a trapezoid and its area is

M+2f(xnl+l)AX.

The sum of the areas of the trapezoids is a modified Riemann sum
L f(X) + [(x + A

L >

a -

_ f(xo);rf(x,) L) ;Lf(xz) b f(xn_1J2+f(xn) Ax

= [%/(xo) + f(xl) + f(x?,) + e + .f(xn—l) + %f‘(xn)] Ax'
We thus make the definition:

DEFINITION

Let Ax = (b — a)/n evenly divide b — a. Then by the trapezoidal approxi-
mation to the definite integral jZf (x) dx we mean the sum

if(x)%-fz(x + Ax)

Ax = [3f(xo) + f0x1) + -+ + f(x,- 1) + 5./(x)] Ax.

The Trapezoidal Approximation of an integral j,’; J(x)dx can be computed
very cfficiently on most hand calculators. First compute the sum

%f(xo) + SOc) + flxy) + -+ %f(xn)

by cumulative addition. Then multiply this sum by Ax to obtain the Trapezoidal
Approximation,

THEOREM 1

For a continuous function f on [a, b), the trapezoidal approximation approaches
the definite integral as Ax — 0%, that is,

fbf(x) dx = lim ZQM

Ax—0* 2

PROOF Comparing the formulas for the trapezoidal approximation and the Riemann
sum, we see that

2 f(x) + f(x + Ax >
y HI T ED 3 0 ax 4+ 5x) — 3x0) A
For dx positive infinitesimal, the extra term
(2.f (xn) = 3/ (x0)) dx

is infinitely small. It follows that

b v . b ’
IO 4 S s~ [ pra
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From a practical standpoint, it is desirable to have a good estimate of error.
We shall first work an example and then state a theorem which gives an error estimate

for the trapezoidal approximation.

EXAMPLE 1 Approximate the definite integral

1
J J1+ x%dx.
0

Use the trapezoidal approximation with Ax = 1. We first make a table of
values of /1 + x2. The graph is drawn in Figure 4.6.2.

1.4

1.2+
1.0+

-

y=-/1+xt
/

/“‘,/1+x'3(/x~1.150|

Figure 4.6.2

12
5 B
J1+x?

1

J1+ x*to

term in trapezoidal

o four places approximation
Xp =0 1.0000 0.5000 = 3/ (x,)
x, =1 04 1.0198 1.0198 = f(x,)
X, =% 1.16 1.0770 1.0770 = f(x,)
Xy =% 1.36 1.1662 1.1662 = f(x3)
X, =% 1.64 1.2806 1.2806 = f(x,)
x5 =1 2 1.4142 0.7071 = 3 f(xs)

5.7507 = total

Thus, 5f(xo) +f(X1) +f(x2) + f(x3) + f(xa) + 3f(x5) = 5.7507. Since
Ax = 1, the trapezoidal approximation is

(5.7507)+ + = 1.1501,

1
f 1+ x*dx ~ 1.1501.
0

The trapezoidal approximation can be made as close to the definite integral
as we want by taking Ax small. From a practical standpoint, however, it is helpful
to know how small we should take Ax in order to be sure of a given degree of accuracy.
For instance, suppose we need to know the definite integral to three decimal places.
How small must we take Ax in our trapezoidal approximation? The answer is given
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by the Trapezoidal Rule, which gives an error estimate for the trapezoidal
approximation.

The error in the trapezoidal approximation is the absolute value of the
difference between the trapezoidal sum and the definite integral,

error = ii(l)—i—fz(x_+Ax) Ax — be(x) dx

a

An error estimate for the trapezoidal approximation is a function E(Ax), which is
known to be greater than or equal to the error.

Thus if E(Ax) is an error estimate, the trapezoidal sum is within E(Ax) of
the definite integral. If we want to be sure that the trapezoidal approximation is
accurate to three decimal places—i.e., the error is less than 0.0005—we choose
Ax so that E(Ax) < 0.0005. We are now ready to state the Trapezoidal Rule.

TRAPEZOIDAL RULE
Let f be a function whose second derivative " exists and has absolute value
at most M on a closed interval [a, b],
[ [ <M  fora<x<hbh

If Ax evenly divides b — a, then the trapezoidal approximation of the definite
integral of f has the error estimate
b—a
12

M(Ax)2

That is,

Eblf(x) +f2(x +Ax)

= ¢ M(AX)?.

<

b
X — (f(x)dx

a

The proof is omitted.

EXAMPLE 1 (Concluded) Welet f(x)= \/T+ x%. Then

ey X
J(x) i gl
) = \/IVI;E - X1+ X2 |

[+ x? (L4 xPP

Therefore | f"(x)| < 1 for all x in [0, 1]. We take M = 1 and use the error
estimate given by the Trapezoidal Rule,

b—a 1 1\? 1
MAXR = —-1+|2| ==
(Ax) 1() 300

12 12 5

Thus our approximation is within an accuracy of 1/300,

S |
f 1+ x%dx - 1.150; < 1/300 ~ 0.0033.
o

This shows that the integral is, at least, between 1.146 and 1.154.
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In this particular example we can even conclude that the integral is between
1.146 and 1.150 (rounded off to three places). That is, the integral is less than its
trapezoidal approximation. This is because the second derivative /“(x) = (1 + x2)~3/2
is always greater than 0, whence the curve is concave upwards and therefore y = f(x)
is always less than or equal to the broken line used in the trapezoidal approximation.
Actually, the value to three places is 1.148. This can be found by taking Ax = ;.

EXAMPLE 2 Consider the integral

Let f(x)=./1 — x%
By Theorem 1, we have

1

. x)+ flx + Ax n

fim 3 SO S A),T
ax—0*+ 53 2 2

However, the Trapezoidal Rule fails to give an error estimate in this case

because f(x) is discontinuous at x = =+ 1.

We now turn to Simpson’s Rule, for which the number of subintervals n
must be even. As before, we divide the interval [a, b] into n subintervals of equal
length Ax with the n + 1 partition points

A= XgyXqs---, Xy = b.

We shall use subintervals of length 2 Ax rather than Ax. On each of the n/2 sub-
intervals

[xO’ x2]’ [xls X4], Ty [xn—2> xn]s

of length 2 Ax we approximate the curve y = f(x) by a parabolic arc that meets the
curve at both endpoints and the midpoint of the subinterval, as shown in Figure 4.6.3.
We then add up the areas under each of the parabolic arcs to obtain an approximation
to the area under the curve, which is the definite integral. We begin with a lemma that
gives a formula for the area of the region under one parabolic arc.

-
T

Figure 4.6.3 X X, X3 Xy X5

LEMMA

The area of the region under the parabola through three points (u, r), (u + h, s),
and (u + 2h, t) (shown in Figure 4.6.4) is

229
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(e, 1)

(u+2h,1)
w+hs)
/‘
Figure 4.6.4 u u+h u + 2h

J
31-(1' +ds + 1),

The lemma is proved at the end of this section. Using the lemma, we find
that the area of the region under one parabolic arc from x, to x,,., is

A’,
—§U09+#uﬁo+ﬂnun

It follows that the sum of the n/2 regions under the parabolic arcs is a modified
Riemann sum,

3

aMw

[f(x)+4f(x+Ax) + f(x + 2Ax)]Ax

A
=§ﬁuua+quo+ﬂnﬂ+Uu»+qug+ﬂnn+~}

A
= —;ﬁ [/ (x0) + 4F (x1) + 2f (x2) + 41 (x3) + 2f(xa) + -+ + 4 (x,-1) + [(x,)].

This modified Riemann sum is Simpson’s approximation to the definite
integral. Note the sequence of coefficients,
1,4,2,4,2,...,2,4, 1.

Like the trapezoidal approximation, it is easily computed on a computer or hand
calculator.

THEOREM 2

For a continuous function [ on [a, b], Simpson’s approximation approaches
the definite integral as Ax — 0%,

b A
[ e = tim SE07G0) + 4100 + 266+ 47Gx5) + o+ F )

Simpson’s approximation is almost as easy to calculate as the trapezoidal
approximation, but is much more accurate. Simpson’s Rule is an error estimate
that involves the fourth derivative of the function and the fourth power of Ax.
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SIMPSON'S RULE
Suppose the function f has a fourth derivative on the interval [a, b] that has
absolute value at most M,
[f%)| < Mfora<x<bh.

If [a, b] is divided into an even number of subintervals of length Ax, then
Simpson’s approximation to the definite integral has the error estimate
b—a
180

M(Ax)

EXAMPLE 3 Use Simpson’s Rule with Ax = 0.25 to approximate the integral

1
A= f e 12 dx
[}

and find the error estimate.

The curve is the normal (bell-shaped) curve used in statistics, shown in
Figure 4.6.5. We are to divide the interval [0, 1] into four subintervals of
equal length Ax = 0.25. The following table shows the values of x and y
and the coefficient to be used in Simpson’s approximation for each partition
point.

)7
e—x’/2
2
)
2%
27%7
%%%
%% é
2.
0 1 x
Figure 4.6.5 Example 3
x e~z Coefficient
0.0 1.000000 1
0.25 0.969233 4
0.5 0.882496 2
0.75 0.754840 4
1.0 0.606531 1

The sum used in the Simpson approximation is then

[1.000000 + 4 « (0.969233) + 2« (0.882496) + 4« (0.754840) + 0.606531]
= 10.267816
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To get the Simpson approximation, we multiply this sum by Ax/3:
S = (10.267816) - (0.25)/3 = 0.855651.

To find the error estimate we need the fourth derivative of

-x¥2

y=e
The fourth derivative can be computed as usual and turns out to be
P == (x* — 6x2 4 3)e ¥2,

On the interval [0, 1], ¥ is decreasing because both x* — 6x2 + 3 and
—x?/2 are decreasing, and therefore y* has its maximum value at x = 0
and its minimum value at x = 1,

maximum: Y0y =3

minimum: Y1) = —1.213061

The maximum value of the absolute value |y*'| is thus M = 3. The error
estimate in Simpson’s Rule is then

b—a 4 1
M =
fgg A 180

This shows that the integral is within 0.000065 of the approximation; that is,

«(0.25)* « 3 = 0.000065.

1
f e dx = 0.855651 + 0.000065,
0
or using inequalities,

1

0.855586 < f e” 12 dx < 0.855716.
o]

For comparison, a more accurate computation with a smaller Ax shows

that the actual value to six places is

1
J e~ %12 dx = 0.855624.
0

The Trapezoidal Rule for this integral and the same value of Ax = 0.25

give an approximate value of 0.85246 for the integral and an error estimate
of 0.00521.

PROOF OF THE LEMMA  The algebra is simpler if the y-axis is drawn through the
second point, so that v 4+ h = 0, and the three points have coordinates

(—h, 1), (0, s), (h, t).

Suppose the parabola has the equation y = ax? + bx + ¢. Then the area
under the parabola is
h
A= (ax*+ bx + ¢)dx
~h
_ax3+bx2+cx f
-3 2

—-h

2
=3 ah® + 2ch.
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When we substitute the coordinates of the three points (—h,r), (0,s), (h, 1)
into the equation for the parabola, we obtain the three equations
r = ah® — bh + ¢,
s=c,
t = ah®> + bh + c.
Add the first and third equations and solve for a:
¥+t =2ah?* 4+ 2c
r+t—2

4=

Finally, substitute the above expression for a and s for ¢ in the equation
for the area:

2
A= gah3 + 2ch

r+t—2 2
:~———0—.]3
T 3 1° + 2ch

r+t—2c+ 6¢
S

}
= gg(r + 4c + 1)

h

PROBLEMS FOR SECTION 4.6

Approximate the integrals in Problems 1-20 using (a) the Trapezoidal Rule and (b) Simpson’s
Rule. When possible, find error estimates. If a hand calculator is available, do the problems
again with Ax = 0.1.

2 2
1 f xdx, Ax =05 2 j x3dx, Ax =05
0

0

2 3y
3 j JxP - ldx, Ax =025 4 f ;dx, Ax =05
1 1

2 i
5 J- ! zdx, Ax =025 6 J.x x + ldx, Ax =025
1 14+ x 0
sy 1
7 f—dx, Ax = 0.5 8 f x3 4+ 1dx, Ax=1
 x+1 o
1 4
9 j./x“-}-ldx, Ax =1 10 J 14+ I/xdx, Ax=0.5
0 1
6 1 12 1
11 j dx, Ax=1 12 j dx, Ax =2
0 x+1 o 2x+3

X

]

a1
Ax =3 14 f dx, Ax=1
0

13 1
—Fd
B .[ x4+ /x 24+ /x

233
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15

17

19

21

22

23

24

25
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11
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J sinf8d6, Ax=rn/2, =n/10 16 J sin? 840, Ax = m/2, =/10
0 0

1 1
j e“dx, Ax =14 18 J edx, Ax=1%

0 0

2 2

Inxdx, Ax=1% 20 f In(1/x)dx, Ax =1
1 1

Let f be continuous on the interval [a, b] and let Ax = (b — a)/n where n is a positive
integer. Prove that the trapezoidal sum is equal to the Riemann sum plus i(f(b) —
f(a@)) Ax, that is,

b

b
L) + flx + Ax) Ax =(Zf(X) Ax

a

+3(/(b) — f(a)) Ax.

Show that if /(@) = f'(b) then the trapezoidal sum and Riemann sum are equal.

Prove that for a linear function f(x) = kx + ¢, the trapezoidal sum is exactly equal to
the integral.

Show that if f(x) is concave downward, f”(x) > O, then the trapezoidal sum is less
than the definite integral of f(x).

Show that for a quadratic function f(x) = ax? + bx + ¢, Simpson’s approximation
is equal to the definite integral.

Show that for a cubic function f(x) = ax® + bx? + cx + d, Simpson’s approximation
is still equal to the definite integral.

PROBLEMS FOR CHAPTER 4

1
Evaluate } 2 e Ax, Ax =1/4
Evaluate 2;0;12_ Ax, Ax =2
Evaluate 3? , 2" Ax, Ax =1

Evaluate 2 x./x + | Ax, Ax =172
If F'{x) = 1/(2x ~ 1) for all x # 1/2, find F(2) — F(1).
IfG(t) = /4t + Lforallt > —1/4, find G(2) — G(O).

A particle moves with velocity v = (3 + 2\/;)24 How far does it move from times ¢, = 1
tot, =57

A particle moves with velocity v = 2, /t* — 1. How far does it move from times ¢, = 1
tot, =47

A particle moves with velocity v = (t + 1)(2t + 3). If it has position y, = 0 at time
t =0, find its position at time r = 10.

A particle moves with acceleration a = 1/t* If it has velocity v, = 4 and position y, = 2
at time t = 1, find its position at time t = 3.

Find the area of the region under the curve y = 1/\/;, I<x<4
Find the area of the region under the curve y = \ﬂ* - x\/E, O0<x< L.

In Problems 13-30, evaluate the integral.

13

[ =00+ 14 J<z+%><2—%> ix
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37

38
39

40

41

42

43

44
45
46

47

EXTRA PROBLEMS FOR CHAPTER 4

* 1/3
f——(xz Iy dx 16 J(4x + DM dx

J () /1 = 3u?) du 18 fx-z\/z'IF dx
f 2+ 11— /2t = 1)de 20 (i%’@isdx
fy\/mdy 2 f(1 — %) *dx
f cos @ dx 24 f Jxsin /x dx

t+1
fe—'dz 26 JLdr
t—1

4 6
f O+ Wy 28 f (/X% — 1)dx
0 2

i 1
f e** dx 30 f x sin (x?) dx

0 0

x 3x
Differentiatef 24 2dt 32 Differentiate | (£2/(t> — 1)) dt
o

1

4 2
Differentiatef \/)‘Q /x — 1dx 34 Diﬂ’erentiateJ. (1/(x + \/})) dx
u y

Find the function F such that F'(x) = x — 1 for all x, and the minimum value of F(x)is b.
Find the function F such that F"(x) = x for all x, F(0) = 1, and F(1) = 1.

Find the function F such that F"(x) = 6 for all x, F(x) has a minimum at x = 1, and the
minimum value is 2.

Find all functions F such that F"(x}) = 1 4+ x~ 3 for all positive x.

Find the function F such that
0 if 0
Fl) = { ifx <

x ifx>0
and F(0) = 1.
Find the value of b such that the area of the region under the curve y = x(b — x),
0<x<bisl
Suppose f is increasing for ¢ < x < b, and Ax = (b — a)/n where n is a positive integer.
Show that

2 ) Ax — J f&)dx | < [f(b) — f(@)] Ax

Suppose f is continuous for a < x < b. Show that
b b
J Fedx| < f £ ()l dx.
Find the area of the top half of the ellipse x?/a® + y?/b> = 1 using the formula
n=20" /1 —udu
Evaluate {* | (1 — x)**(1 + x)'/? dx using the formula = = 2[* | /1 — u* du.
Find dy/dx if y = _]'f) x f(t) dt.
Suppose f(t) is continuous for all r and let G(x) = {7 (x — t)f(r)de. Prove that
G'(x) = f(x).

Prove that for any continuous functions f and g,
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ab

b b
248 J flgl) dx < A? f J(x)?dx + B f g(x)? dx.

{

1 48 Prove Schwartz’ Inequality,

b e
[ Slxgx)dx < Jf A/'(»\‘)Zd-\‘f g(x)* dx.

Ja

Hint: Use the preceding problem.
0 49 Suppose f is continuous and dx is positive infinitesimal. Show that
b b
Y S+ ddx)de x J. [(x)dx.

Hint. For each positive real c,
1
flx)—c <f(x + de) <f(x) + e

Use this to show that

b b 1 b
[ Jx)dx —clb—ay <y, f’<.\‘ + de) dx < f J)dx + cb — a).

va

O 50 Suppose fis continuous, n is an integer, and dx is positive infinitesimal. Prove that

b b
Y f(x 4 ndx)dx = J f(x) dx.



LIMITS,
ANALYTIC GEOMETRY,
AND APPROXIMATIONS

5.1 INFINITE LIMITS

Up to this point we have studied three types of limits:

lim f(x) = L means f(x)~ L whenever x = cbut x # c.

x—c

lim+ f(x) = L means f(x) ~ L whenever x = c but x > c.

lim f(x) =L means f(x) ~ L whenever x ~ ¢ but x <c.

The limit notation lim,_  f(x) = L means that whenever H is positive
infinite, f(H) ~ L (Figure 5.1.1(a)).

lim,_,. f(x) = — oo means that whenever x =~ ¢ and x # ¢, f(x) is negative
infinite (Figure 5.1.1(b)). The various other combinations have the meanings which
one would expect.

o1
EXAMPLE 1 hmi2 = 0.

x—>0 X
.1 .1
EXAMPLE 2 lim — = oo, lim — = —oo.
x->0* X x-0~" X
3Ix* +5x — 2

EXAMPLE 3 Find lim —/————.
x— oo 2x4 — 6X3 + 7

Let H be positive infinite. Then
3H*+5H -2 34+ 5H 3 -2H%

2H* —6H® +7 2—6H ' + 7TH *

3H* + 5H — 2 3+40-0 3

2H4—6H3+7) T2-040 2

Thus the limit exists and is 3.

and therefore st(
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238 5 LIMITS, ANALYTIC GEOMETRY, AND APPROXIMATIONS

infinite
telescope

infinite
microscope
(@) lim f{x)=1L

X o

/ ('y infinite
microscope

(c-€f(c—e€)

infinite
/ telescope

(b) lim f(x)= —
Figure 5.1.1 x 3¢

EXAMPLE 4 Find lim (x® + 200x?).

We have x* + 200x* = x*(x + 200). When H is negative infinite, H? is

positive infinite and (H + 200) is negative infinite, so their product is negative
infinite. Thus

lim (x* + 200x%) = — oo,

X—= —a



5.1 INFINITE LIMITS 239
When limf(x) = w0 or —co,
X—cC

the limit does not exist, because f(x) has no standard part. The infinity symbol is
only used to indicate the behavior of f(x) and is not to be construed as a number.

EXAMPLE 5 A student can get a score of 100z/(t + 1) on his math exam if he studies
t hours for it (Figure 5.1.2). If he studies infinitely long for the exam, his score
will be infinitely close to 100, because if H is positive infinite,

o 100H . 100 _ 100__100
H+1) “"\U+1/H 140
In the notation of limits,

lim oor = 100.

t»ot + 1

[

! 100
i 2 +1
|

|

|

-1l !
{
Figure 5.1.2 |

EXAMPLE 6 Given any polynomial
fO=at"+a, '+ +at+a

of degree n > 0, the limits as ¢ approaches —oo or +co are as follows.
Suppose a, > 0. When n is even, lim,,__ f(t) = oo, lim,, f(t) = co.
When n is odd, lim,_, _, f(t) = — o0, lim,_, ., f(t) = o0.

The signs are all reversed when a, < 0.
All these limits can be computed from

n—1
a a a
o o4 .

f) =t"a, + ; i T g

EXAMPLE 7 In the special theory of relativity, a body which is moving at constant
velocity v, —¢ < v < ¢, will have mass

My

m=——
1 — v?/c?

and its length in the direction of motion will be

Z - lo«/l - DZ/CZ.



240

EXAMPLE 8 Evaluate Iim

5 LIMITS, ANALYTIC GEOMETRY, AND APPROXIMATIONS

Here mq, [y, and ¢ are positive constants denoting the mass at rest (that is,
the mass when ¢ = 0), the length at rest, and the speed of light.

Suppose the velocity v is infinitely close to the speed of light ¢, that is,

r=c— ¢ ¢ > 0 infinitesimal.

) EPAY] 2 2 2
r c—¢ c“ —(c* — 2ce + ¢
Then \/1—23\/1—( CZL:\/ ( o2 )

2e g2 (2 8)
famad _— = = E s — - 7 s
[ ¢ ¢ \

N’\‘

c c

which is the square root of a positive infinitesimal. Thus \ﬂ — 3/t isa
positive infinitesimal. Therefore for ¢ infinitely close to ¢, m 1s positive infinite
and [ is positive infinitesimal. That is, a bady moving at velocity infinitely
close to (but less than) the speed of light has infinite mass and infinitesimal
length in the direction of motion. In the notation of limits this means that

. Mg
lim = + =,

roe- \/1 _ 1‘2/02

lim [, /1 — ¢%/c? = 0.

Caution: This example must be understood in the light of our policy of
speaking as if a line in physical space really is like the hyperreal line. Actually,
there is no evidence one way or the other on whether a line in space is like
the hyperreal line, but the hyperreal line is a useful model for the purpose of
applications.

sin x

x—=ee X

When H is positive infinite, sin H is between —1 and 1 and thus finite, so
(sin H)/H is infinitesimal. The limit is therefore zero:

. sinx

lim — = 0.

xowo o X

EXAMPLE 9 Find lim cosx.

If H is any integer or hyperinteger, then
cos 2nH) = 1, cos(2rH + ) = — 1.

In fact, cos x will keep oscillating between 1 and —1 even for infinite x.
Therefore the limit does not exist.

Limits involving e* and In x will be studied in Chapter 8.



PROBLEMS FOR SECTION 5.1

5.1 INFINITE LIMITS 241

Find the following limits. Your answer should be a real number, co, — oz, or “does not exist.”
With a calculatgr, cor2pute some values as x approaches its limit, and iee what happens.
. X — X

1 X ¥ 5 2
3 lim 3 — 10¢2 — 6t — 2 4
} hadi- o)
x2—x+4
S )!Loo 3x2+2x -3 6
.5y 43yt 42
7 -~ - @@=
yv’ll}lw 3)73 —_ 6y + 1 8
9 fim X+ 2 10
x> /3x + 1
11 lim x — \/x 12
13 lim ¥x + 2 14
15 lim — f 16
17 lim 1+~ 18
x=0-
19 im— 1 20
x=0 X X
. 5x+ 6
n T 2
, t
23 li 24
oo 482 + 1
. t2+2
2 "
S l—1>1—moo 4t + 2 26
. St+2
27 rlirg 2 — 66+ 1 8
. l—=571
B RiTet %
. 14+ 2t
M g S 32
33 Jim L= 34
x—2 2 — X
. y+1
35 lim ———— 36
y3+(y = 2)y - 3)
y+1
37 lim—————— 38
)-'3()’ -2y -3
. 3+ 4
39 ltlfll 24+ -2 40
2
4
41 fim = 42
o2t x? — 4
43 lim /x + 2 — \/; 44
45 lim /3x + 1 — 2/x 46

xlnlnco 4X — 10
lim 42 + 6t + 2

t—=+—ow

im 2x%? —4x + 1

x—'oo3X2+5X"‘6
Y-yt

lim S ————
yow 2y — 4y + 5

usew 4 —
11m \/;c + \/X—T
lim /2 —x
lim L
x—'O*\3/;
1

lim 1 + —

x—0+

i 1 1
x—l»r(‘;l”\/; X

lim 10x% + x + 2
x= @ x — 4X —1

. t
A
limh\/tTﬁ
im0 4t + 2
lim P —6rr +4
- 2%+ -5
fim 546171 4172
10 8 —3t7 1 4 272

1 —2t70 4472

L e
R B
xl—l»l?+2—x
h‘m_ﬂ*
=37 (y — 2y — 3)
lim ii
x5 x2 — 10x + 25
limx2+4

x=2X° — 4

lim — 1

=it x — 2. /x + 1
lim (x + 1)*7? — x3/2

X2

lim,/2x+ —\/;
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47 lim /%% + x - x 48 lim /X2 + 1 — x

© o mied 0 lmViiEe i)
=

51 lim\/ltz—3u+2—\ﬂ42+1 52 \/;+-—\/:
o Jim \/ﬁ ~ \/;

53 lim Y1+ 4— Y1 54 lim /2 41—

t— o =
55 lim cos (1/t) 56 lim sin (1/1)
= 1=
57 lim ™ 58 lim &%
- f »x !
59 lim sin 8 60 lim 8 cos 6
80— > f0—x
61 lim tan 6 62 lim tan @
-0 g2
63 lim tan@ 64 lim tan@
—-ni2 * o—+nj2-
65 l_irré sin (1/x) 66 lin(l) x cos (1/x)
67 lim 3% 68 lim 2%
x=0+ X =0 X
69 Prove that if lim,_, . f(x) = oo then lim,_ . 1/f(x) = 0.
71 Prove that if lim,_,,. f(x) = 0 and f(x) > O for all x, then lim,_,, 1//(x) = cc.
72 Prove that if lim,_ . f(x) exists or is infinite, then
lir(? f{x) = lim f(1/z).
x=0* 1w
73 Prove that if lim,, ,, f(x) exists or is infinite then

11m f(x) = 11m f1/o).

5.2 L'HOSPITAL'S RULE

Suppose [ and g are two real functions which are defined in an open interval con-
taining a real number ¢, and we wish to compute the limit

AC))
x—a g(x)
Sometimes the answer is easy. Assume that the limits of f(x) and g(x) exist as x — q,

lim f(x) = L, lim g(x) = M.

xX—*a xX—a

If M # 0, then the limit of the quotient is simply the quotient of the limits,
S _ L

im =—,
x—a g(x) M
This is because for any infinitesimal Ax # 0,

lim& = S[(f(a + Ax)\ _ st(f(a + Ax))

L
si(gla + Ax)) M’

x—a g(x) g(a + AX)
If L # 0and M = (Q, then the limit
m

x—=a g(X)



5.2 L'HOSPITAL'S RULE

does not exist, because when Ax # 0 is infinitesimal, f(a + Ax) has standard part
L # 0 and g(a + Ax) has standard part 0.
But what happens if both L and M are 0? In some cases a simple algebraic
manipulation will enable us to compute the limit. For example,
x2 -1 (x+ Dx—1)

i = fim ST i e — 1) = —2,
x>-1 X + x——1 x+1 x——1

even though both the numerator x*> — 1 and the denominator x + 1 approach 0 as
x approaches —1.

In other cases I'Hospital’s Rule is useful in computing limits of quotients
where both L and M are 0. Before stating ’'Hospital’s Rule, we introduce the notion
of a neighborhood of a point ¢ (Figure 5.2.1).

—ofs -
5
A neighborhood of ¢

¥

Figure 5.2.1

DEFINITION

By a neighborhood of a real number ¢ we mean an interval which contains ¢ as
an interior point,

The set formed by removing the point ¢ from a neighborhood I of ¢ is called a
deleted neighborhood of c. Thus a deleted neighborhood is the set of all points
x in I such that x # c.

L'HOSPITAL'S RULE FOR 0/0

Suppose that in some deleted neighborhood of a real number c, f'(x) and g'(x)
exist and g'(x) # 0. Assume that

lim f(x) = 0, lim g(x) = 0.

xX2C

If lim / (x)) exists or is infinite, then

x=c g
@ W)
e g

(See Figure 5.2.2.) Usually the limit will be given by

L) _ 10
e gx) g}’

and in this case the proof is very simple.

fx) c

c c W
e fx)/g(x)

Figure 5.2.2 L'Hospital's Rule

——da
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Sx) [0

PROOF IN THE CASE im 2" =
x—e g(x)  gle)

Let Ax be a nonzero infinitesimal. Then f(c) = 0, g(¢) = 0, and
e+ Ax)  (fle+ Ax) = fle)yAx _ f1(c)
glc + Ax)  (gle + Ax) — g(e))/Ax  g'(¢)

Taking standard parts we get

S _J@ )

e g0 glo)  ame gx)

Intuitively, for x &~ ¢ the graphs of f(x) and g(x) are almost straight lines of
slopes [(c), g'(¢) passing through zero, so the graph of f(x)/g(x) is almost the hori-
zontal line through f'(c)/g’'(c) (Figure 5.2.3).

g'(c) Ax

¢ g(c+ Ax)

f(x)

g(x)
/c \

The equation

Figure 56.2.3

S(x) _ J'(e)
m =—
e £(X) glo)

is not always true. For example, g'(¢) might be zero or undefined.

. f(x)
.lrl?} g'(x)

is sometimes another limit of type 0/0, that is,

lim f'(x) =0 and limg'(x)=0.
When this happens, ’Hospital’s Rule can often be reapplied to lim,.,. f'(x)/g'(x).
The proof of ’Hospital’s Rule in general is fairly long and uses the Mean Value
Theorem. It will not be given here.

Here are some examples showing how the rule can be applied.

(1/x) ~ 1

EXAMPLE 1 Find lim

x—'I\/;_].




5.2 L'HOSPITAL’S RULE

Both (1/x) — 1 and ./x — 1 approach 0 as x approaches 1. The limit is thus
of the form 0/0. Using "'Hospital’s Rule,

1/x) — -2 —
limL/i‘I—l _)51_22;1____2.
x=1 x —1 r—»l_X !

J —1
EXAMPLE 2 Find lm¥> 1~ 1

x—0 X3

The limit is of the form 0/0. The limit of f'(x)/g'(x) as x — 0 is oo

lim ai/x + 1 — 1)/dx _ lim 2(x+ 1) 12
x—0 d(vc3)/dx - x>0

Thus by I’Hospital’s Rule,

lim«/x+1—1=

x>0 x3

x—3

EXAMPLE 3 Find lim (x + ——)(«/x +1—=2)

This limit is not in a form where we can apply I’Hospital’s Rule. We must
first use algebra to put it in another form,

N N S BV RN E

By elementary computations, lim x(./x + 1 —2)=3.0=0.
x—3
Using I’'Hospital’s Rule,
1 —-1/2
lim1/x+1—2:lim§(x+1) R |

— 412 =
=3 x—3 3 1 2 4

We then add the limits to get the desired answer,

lim (x+*——)(«/x+1——2 —llmx(,/x+1—2 + lim @;2

x—3 x—3 -3
— 1 _ 1
=0+i=14

(x—3) 1

+
. ) 4 x + 1
EXAMPLE 4 Find Ilim—————5—
x—1 (X — 1)
This limit is of the form 0/0. When "'Hospital’s Rule is used the limit is still
of the form 0/0. But when it is used a second time we can compute the limit.

x—3 1 | 1

o t i LA G 2x e )T
=1 = -t 7 =
T oy O — e 2 8

L’Hospital’s Rule also holds true for other types of limits. That is, it holds
true if x — ¢ is everywhere replaced by one of the following.

x—-ct, x-—c, X — o0, X = — .

245
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EXAMPLE 5 Find lim ——“x+4_2.

x—=0* \/;c

The limit as x — 0 does not exist because \/)_c is defined only for x > 0.
However, the one-sided limit as x — 0% has the form 0/0 and can be found by
"'Hospital’s Rule.

L x+4-=2 . 3x + 472 , Jx
lim Y———— = lim ~——7— = lim = 0.
x-0* \/} x=0* 3X ! =20t /x 4+ 4

A second form of I’'Hospital’s Rule deals with the case where both f'(x) and
g{x) approach oo as x approaches c.

L'HOSPITAL'S RULE FOR w/w

Suppose ¢ is a real number, and in some deleted neighborhood of c, f'(x) and
g'(x) exist and g'(x) # 0. Assume that
lim f(x) = o0, lim g(x) = cc.

X c X

/')

) exists or is infinite, then

If lim

x—e g'(x

S _ o S

lim 227 = 2=

1 .
xoe g(x)  x-e gU(x)

The rule for co/oo is exactly the same, word for word, as the rule for 0/0,
except that O is replaced by co. We omit the proof, which is more difficult in the case
o0/co. Actually, the assumption

lim f(x) = oo
is not needed.
Again, 'Hospital’s Rule for oo/os also holds for the other types of limits,

x—ct, x—c, X — w, X — — 0.

. . x+ Jx+1
EXAMPLE 6 Find Ilim

x—'w\/;c+\/x+ 1

By I’'Hospital’s Rule for oo/c0,

1
I+
. x+ . /x+1 ) 2/x
lim = lim = w.

xﬂoo\/;_k /x + 1 x— o 1 n 1
2/x 2 x+ 1

Warning: Before using "'Hospital’s Rule, check to see whether the limit is
of the form 0/0 or co/c0. A common mistake is to use the rule when the limit is not of
one of these forms.




EXAMPLE 7 Find lim

5.2 L'HOSPITAL'S RULE

Jx = (1))
VIR

The limit has the form 0/1, so ’'Hospital’s Rule does not apply.
S Imex -

x—1

Correct: lim = - - =0
e x lim x 1
x—+1
Incorrect:
) - d -
lim \/; (1/x) = lim W/x = (U/x)/dx = lim *1 + —1 = E
-1 x o1 dx/dx =1\ /x x| 2

PROBLEMS FOR SECTION 5.2

In Problems 1-34, evaluate the limit using I'Hospital’s Rule.

1

11

13

15

17

19

21

23

25

27

29

_ yr—1
SO+ x—3 5 i /

1' m

o x s1+12 =2t 41
limz—./x+2 4 limt+5—2t*‘—r‘3
o2 4 —x? e 3412 —172

lim VLL}’__,I 6 lim \/;c -1
MRy P -1

— )4
lifll(l/h)—'I 8 lim (t + —1)((4 — )32 - 8)
x—=0 X t=0 t
fim (l + i)(, fi+1—1) 10 fim
o\t /1 %0 f2x + 1 -1
. (u —1)° 2+ Ix
A G A 2 L fd
ll—l}gu"—uz—!—w—} 1 }1-%13—2/)(
1+ 5/\/u . 3+u P 4ut
m  ——= 14 11m —lez—
w02 4 1/ /u w0t 2+ 4u
. 172 1/3 _ 1
fim X 16 fim LoD
ow X4 x o2 — J4t+ Dt +2)
Lo 1l=ye-1 . y+y !
lim ——— ——= 18 lim —————
tveo | — /it —1) oo+ 1=y
L R R td
S 20 lim =———————
e = + e =3 xx
lim sin x 2 lim 1 —cosx
X0 X x=0 x
. a2
lim sin (2x) 24 lim sin” x
x=0 X x—=0 X
cos 0 . cos(30)
_ 26
e—{rgz /2 — 0 9—1»?32 nf2 — 0
. tanf . sin(20)
1 -
;1_{13 0 28 050 sin (50)
r . tz
tim &1 30 lim

-0t moe —t—1

247
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2
31 lim 12¢ 2 Jim D
1t — 1 =0 t
. Xlnx . sin (2x)
33 11411} x? —1 34 A% Tn (x+ 1)

In Problems 35-52, evaluate the limit by "'Hospital’s Rule or otherwise.
X't _ \/)_c

35 lim ~— -— 36 lim
x=1 X x=1*X — 1
i 271 B umt Y
37 o1t x — 1 it
x4 x7? 54 x7!
LA 40 :
39 \han} 2v + x7? xlin} 1+ 2x7 !
¢ NP4 v +2
41 lim — 42 i 2 F Y+ 2
x=x [y 4| -0 x—4
X+l - /x+1 -1
43 VA Sl it 44 vyt -1
0 /x +4—2 x—0 /——_I_')_l
. +1+1 2 11—
45 lim L 46 lim i,w#
x—'O“\/;—Tl__l —1 x=0 x+1—1
1 1 1
47 lim (x + 3){——+ —— I 5 + —
LU 2,\‘+\‘+2) 8 rl’f&(H )( x+2)
. 1 1 — 6x —
49 m(x+ 50+ T 50 1'93*” +4
23 - 3
51 lim \3)6\" 52 lim M
x=2 X% —4x x=1+ 2x% =2
53 Suppose fand g are continuous in a neighborhood of ¢ and g(e) # 0. Show that

ixflodt fla)
m-;~-— = —".
x-a \; g([)([[ g([!)

LIMITS AND CURVE SKETCHING

By definition, lim,_, f(x) = L means that for every hyperreal number x which is
infinitely close but not equal to ¢, f(x) is infinitely close to L. What does lim ., f(x) =
L tell us about f(x) for real numbers x? It turns out that if Ilm\ﬂ f(x) = L, then for
every real number x which is close to but not equal to ¢, f(x) is close to L.

In the next section we shall justify the above intuitive statement by a math-
ematical theorem. The main difficulty is to make the word “close” precise. For the
time being we shall simply illustrate the idea with some examples.

L2
EXAMPLE 1 Consider the limit 11m =2
This limit is evaluated by letting x # 0 be infinitesimal :

2L.\‘+1_2+.\'
x—1 1-x
2/x +1 (7+\) St +x) _2+0
sl‘

lim —-
oo l/x — [ (1—\) 1—-0

1 —x
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Let us see what happens if instead of taking x to be infinitely small we take
x to be a “small” real number. We shall make a table of values of

2/x + 1

X)=——

f(x) x — 1

for various small x.
) L 2x+1 flx)to
¥ S = Ix — 1 four places

0.1 21/9 2.3333
0.01 201/99 2.0303
0.001 2001/999 2.0030
0.0001 20001/9999 2.0003
-0.1 19/11 1.7364
—0.01 199/101 1.9703
—0.001 1999/1001 1.9970
—0.0001 19999/10001 1.9997

We see that as x gets closer and closer to zero, f(x) gets closer and closer to 2.
With a calculator, the student should try this for some of the limits on pages 124 and 241.

The table helps us to draw the graph of the curve y = f(x). Although the
point (0. 2) is not on the graph, we know that when x is close to 0, f{x) is close to 2,
and draw the graph accordingly. The graph is drawn in Figure 5.3.1.

Other types of limits also give information which is useful in drawing graphs.
For instance, if lim, ,, f(x) = o0, then for every number x which is close to but not
equal to ¢, the value of f(x) is large. And if lim_,  f(x) = L, then for every large real
number x, f(x) is close to L.

In both the above statements, if we replace “close” by “‘infinitely close™ and
“large” by “infinitely large” we get our official definition of a limit. We give two more
examples.

flx)
©, 2)
14
lim — =2
x=0 = -1
x
IT
—t +— +— —+—
-2 -1 0 1 2 x
Figure 5.3.1
. .. . 1
EXAMPLE 2 Consider the limit  lim ————— = oo.

w2 (x — 22
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For x infinitely close but not equal to 2, 1/(x — 2)? is positive infinite. Let
us make a table of values when x is a real number close to but not equal to 2.

x S(x)
21 100
2.01 10000
2.001 1000000
1.9 100
1.99 10000

1.999 1000000

As x gets closer and closer to 2, f(x) gets larger and larger.

i

EXAMPLE 3 i l+ —) =1

it ( i 2)2)
For infinitely large x, 1 + 1/(x — 2)* is infinitely close to 1. Here is a table of
values of 1 + 1/(x — 2)? for large real x.

1
x 1+ x — 27 27
12 1.01
102 1.0001
1002 1.000001
10002 1.00000001

As x gets large, 1 + 1/(x — 2) gets close to 1. Also notice that

1
li 1+ —| =
x:rjlac ( + (x - 2)2) 1’

and for large negative x, 1 + 1/(x — 2)? is close to 1.

In Chapter 3 we showed how to use the first and second derivatives to sketch
the graph of a function which is continuous on a closed interval. In the next example we
shall sketch the graph of the function f(x) = 1 4 1/(x — 2)* But this time the function
is discontinuous at x = 2, and the domain is the whole real line except for the point
x = 2. Our method uses not only the values but also the limits of the function and its
first derivative.

1
EXAMPLE 4 Sketch thecurve f(x)=1+ —13.
(x—2)
The first two derivatives are
)= -2x—2)7°  f'(x)=6(x—2)"*

The first and second derivatives are never zero. f(x) is undefined at x = 2.
In our table we shall show the values of f(x) and its first two derivatives at a
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point on each side of x = 2. We shall also show the limits of f(x) and its first
derivative as x —» — o0, x —» 27, x —» 2%, and x — oo. (We will not need the
limits of f"(x).)

f(x) Jx) f(x) Comments
lim 1 0 horizontal
x=1 2 2 6 increasing, U
liga_ 0 o0 vertical
liI;{l* oo — w0 vertical
x=3 2 -2 6 decreasing,u
lim 1 0 horizontal

The first line of the table, lim,_, _, shows that for large negative x the curve
is close to 1 and its slope is nearly horizontal. The second line, x = 1, shows
that the curve is increasing and concave upward in the interval (— oo, 2),
and passes through the point (1, 2) with a slope of 2. The third line, lim, _,, -,
shows that just before x = 2 the curve is far above the x-axis and its slope is
nearly vertical. Going through the table in this way, we are able to sketch the
curve as in Figure 5.3.2.

The curve approaches the dotted horizontal line y = 1 and the dotted vertical
line x = 2. These lines are called asymptotes of the curve.

(35 2)

Figure 5.3.2 y=1+(x—2)"2

Suppose the function f and its derivative f* exist and are continuous at all

but a finite number of points of an interval I. The following procedure can be used in
sketching the curve y = f(x).

Step 1

Step 2

Step 3

Step 4

First carry out the procedure outlined in Section 3.9 concerning the first
and second derivative.

Compute lim,._, _ ., f(x) and lim,_, , f(x).
(They may either be real numbers, + oo, — o0, or may not exist.)

At each point ¢ of I where f is discontinuous, compute f{(c), lim,_ . f(x)and
lim, .- f(x).
(Some or all of these quantities may be undefined.)

Compute lim,_, , f'(x) and lim,_, _ , f'{x).

251
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Step 5 At each point where f' is discontinuous, compute f(c), lim, .- f’(x) and
lim,_,.- f7(x).

We shall now work several more examples; the steps in computing the limits
are left to the student.

EXAMPLE 5 [(x) = 375
Then filx) = 3x720, ) = —Ee T,

At the point x = 0, f(x) = 0 and J"(x) does not exist. We first plot a few
points, compute the necessary limits, and make a table.

f(',\‘,), B 1(x) -/‘”('\j), ) §Q{n111ents -
lim — 0 horizontal
x=—1 —1 3/5 6/25 increasing, u
lim 0 7. vertical
x=0-
x=0 : 0 undef.
lim | 0 7 vertical
x-0* |
x=1 J | 3/5 —6/25 increasing, ~
lim 7 0 horizontal

Figure 5.3.3

The behavior as x approaches — =, =, and zero are described by the limits
we have computed. As x approaches either — 0 or co, f(x) gets large but the
slope becomes more nearly horizontal. As x approaches zero the curve
becomes nearly vertical, increasing from left to right, so we have a vertical
tangent line at x = 0.
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EXAMPLE 6 f(x) = x*/°.
Then Sy =875 fr(x) = —x O

f'(x) is undefined at x = 0. We make the table:

Sx) J(x) J(x) Comments

fim %“ 0 horizontal
x=—1 1 —4/5 —4/25 decreasing, N
lil'éli 0 — % vertical
x=0 0 undef.

lim 0 s vertical
x—=0*
x=1 1 4/5 —4/25 increasing, N
lim o* 0 horizontal
X x

With this information we can sketch the curve in Figure 5.3.4.

—1 0,00 1| x

p = xi/8

Figure 5.3.4

This time the limits of the derivative as x approaches zero show that there
is a cusp at x = 0, with the curve decreasing when x < 0 and increasing
when x > 0.

COS X
- for 0 < x < 2.

sin x

f(x) and f'(x) are undefined at x = 7 because the denominator sin = is zero.

The first two derivatives are

EXAMPLE 7 Sketch the curve f(x) =

1 COS X

J'x)=2

’
X) = — — _ )
J) sin? x’ sin® x

Thus f'(x) is always negative, and f"(x) = 0 when x = n/2, 3n/2. Here is
the table:
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fx) 1'(x) 1) Comments

lim x - vertical

x—=0

n/d 1 —1/2 + decreasing, v

/2 0 -1 0 decreasing, inflection
3m/4 -1 —-1/2 - decreasing, N

1im» —C —x vertical

lim * - vertical

Sn/d4 1 —1/2 + decreasing, u

3n/2 0 —1 0 decreasing, inflection
Tr/4 —1 —172 - decreasing, N

lim - - vertical
x> 2n”

Notice that the table from = to 2x is just a repeat of the table from 0 to =.
This is because

cos(x + m) —cosx COsX

sin(x +7) —sinx sinx’

The curve is sketched in Figure 5.3.5.

_ Cosx
0 T 2w X Y = Sinx
Figure 5.3.5
PROBLEMS FOR SECTION 5.3
1 This figure is a sketch of a curve y = f(x). At which points x = ¢ do the following

happen?
(a) [ is discontinuous at ¢

(b) lim f(x) does not exist
(¢) lim f(x)does not exist

(d) fis not differentiable at ¢
(e) lim f'(x) does not exist

(f) lim f'(x) does not exist.

X



In Problems 2-42, sketch the graph of f(x). Use a table of values of f(x), /'(x), f"(x), and limits
of f(x) and f'(x). Then check your answer by using a graphics calculator to draw the graph.

2
4
6

8

10

12

14

16

18

20

22

30
32

34

38

40

5.3 LIMITS AND CURVE SKETCHING

fx)=2-3x*
f)=x>—x
flx)=5x* = x*
1
fey=1+2
2
f(x)=x2+;

1
) =x"+

£09 =2 —x
fog=1-
-z

flx)=2—(x— 1"

2x
o=
X
&=
1
f(x)=x2_1
2
x
) =2
FE =24 (x — 1%
S =4/1—x
f0 = 5= 1
y= . , O<x<2nm
cos
y=tan’x, -n<x<nr
y:.——l——, <x=<2rm
sin x cos x

fx)=2—-/x*+4

M
C\ ———————

H

I
I
!
I
I
| z//
|
4
T
:
|
|
|

3 fx)=x% — 2x
5 Fx) = x* — &x°
7 flx) = x> — ix*
. 1
9 Joy =571
W=
13 S0 =/x
1
15 -
fx) 7
7 =
x—1
19 Sy = x+1
i
a1 Jix) = x2 41
2
B W=
25 S0 = o - -
27 fx) = x*?

29 fx) = /4 - x?
31 f)=1- /1 —x*
1

33 y = 0<x<2n

]

sin x
35 y=tanx, 0<x<2n
1
=sinx’+cosx’

39 fx)= —/x>* -4

1
f(X)——\/ﬁ

37 y

<x<2n

255
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42 f) =

Ji-w

In Problems 43-55, graph the given function.

43 )= x] = 1 44 ) =1 — 2x|
45 fx) = 2x — 1 46 =2+ ‘% -3
47 f(,\j = 2x + |,\’ — 2| 48 /(_\‘) = x2 + |\|
49 S =x2+ |x + 1] 50 fix) = |x* =1
51 S = sl 52 J1x) = X/l
~ 54 flx) = ":3 -
53 [(\) = X + m Jlx)= ﬁ\(’}
55 flx) = x /1 + 1x?
PARABOLAS

In this section we shall study the graph of the equation
y = ax? + bx + ¢,

which is a U-shaped curve called a vertical parabola. We begin with the general
definition of a parabola in the plane.

Recall that the distance between a point P and a line L is the length of the
perpendicular line from P to L, as in Figure 5.4.1. If we are given a line L. and a point
F not on L, the set of all points equidistant from L and F will form a U-shaped curve
that passes midway between L and F. This curve is a parabola, shown in Figure 5.4.2.

P

Distance from
Pto L

Figure 5.4.1

Parabola = set of points
Figure 5.4.2 equidistant from L and F.
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DEFINITION OF PARABOLA

Given a line L and a point F not on the line, the set of all points equidistant from
L and F is called the parabola with directrix L and focus F.

The line through the focus perpendicular to the directrix is called the axis
of the parabola. The point where the parabola crosses the axis is called the vertex.
These are illustrated in Figure 5.4.3.

As we can see from the figure, the parabola is symmetric about its axis. That
is, if we fold the page along the axis, the parabola will fold upon itself. The vertex is
just the point halfway between the focus and directrix. It is the point on the parabola
which is closest to the directrix and focus.

When a ball is thrown into the air, its path is the parabola shown in Figure
5.4.4, with the highest point at the vertex.

Telescope mirrors and radar antennae are in the shape of parabolas. This is
done because all light rays coming from the direction of the axis will be reflected to a
single point, the focus (see Figure 5.4.5). For the same reason, reflectors for search-
lights and automobile headlights are shaped like parabolas, with the light at the
focus.

Figure 5.4.3

Figure 5.4.4 Figure 5.4.5

A parabola with a vertical axis (and horizontal directrix) is called a vertical
parabola. The vertex of a vertical parabola is either the highest or lowest point,
because it is the point closest to the directrix.

257
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EXAMPLE 1 Find an equation for the vertical parabola with directrix y = —1 and
focus F(0, 1) (Figure 5.4.6).

Directrix y= — 1

Figure 5.4.6

Given a point P(x, y), the perpendicular from P to the directrix is a vertical
line of length /(3 + 1)%. Thus

distance from P to directrix = /(v + 1)%
Also, distance from P to focus = . /x? + (v — 1)~

The point P lies on the parabola exactly when these distances are equal,

Jo+ D=5+ (y— 1A

The equation of a parabola is particularly simple if the coordinate axes
are chosen so that the vertex is at the origin and the focus is on the y-axis. The
parabola will then be vertical and have an equation of the form y = ax?.

THEOREM 1

The graph of the equation

y = ax?

(where a # 0) is the parabola with focus F(0,1/4a) and directrix y = — 1/(4a). Its
vertex is (0, 0), and its axis is the y-axis.

PROOF Let us find the equation of the parabola with focus F(0,d) and directrix
y = —d, shown in Figure 54.7,

Our plan is to show that the equation is y = ax? where d = 1/4a. Given a

point P(x, y), the perpendicular from P to the directrix is a vertical line of
length ./(y + d)2. Thus

distance from P to directrix = /(y + d)°.
Also, distance from P to focus = . /x® + (y — d)%.

The point P lies on the parabola exactly when these distances are equal,

JO+ D =X+ (- d>
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)7

/P (x,y)

(0, d)4

)7=—d

Figure 5.4.7

Simplifying we get
G+dP=x*+@-d°
y2 4 2yd + d?* = x* + y* — 2yd + d*

4yd = x*
.__1 2
V=2

Putting a=1/4d, we have d=1/4a where y = ax? is the equation of the parabola.

Note that if a is negative, the focus will be below the x-axis and the directrix
above the x-axis.

EXAMPLE 2 Find the focus and directrix of the parabola
y =-(1/2) x2.

In Theorem 1, a = — 1/2and d =1/4a = —%. The focus is F(0, —3), and the
directrix is y = .

The next theorem shows that the graph of y = ax® + bx + ¢ is exactly
like the graph of y = ax?, except that its vertex is at the point (x,, y,) where the
curve has slope zero. The focus and directrix are still at a distance 1/4a above and
below the vertex.

THEOREM 2
The graph of the equation
y=ax*+bx +¢

(where a # 0) is a vertical parabola. Its vertex is at the point (x,, yo) where
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the curve has slope zero, the focus is F(xq, yo +1/4a), and the directrix is
Y =Yo — l/4a
We first compute x,. The curve y = ax? 4+ bx + ¢ has slope dy/dx =
2ax + b. The slope is zero when 2ax + b = 0, x = —b/2a. Thus

X, = —b/2a.

Let p be the parabola with focus F(x,, Yo + 1/4g)and directrix y = yo — 1/4a.
Put X =x —xg and Y =y — y,. In terms of X and Y, the focus and
directrix are at

(X,Y)=(014a), Y= — la
By Theorem 1, p has the equation
Y = aX?,
or ¥ — yo = alx — x)%,

y = ax? — 2axyx + (axd + yo).
Substituting —b/2a for x,, we have
y=ax? + bx + (b*/4a + y,).

This shows that the parabola p and the curve y = ax?® + bx + ¢ differ at
most by a constant. Moreover, the point (x,, )o) lies on the curve. (xq, yo)
is also the vertex of the parabola p, where (X, Y) = (0, 0). Therefore the
curve and the parabola are the same.

EXAMPLE 3 Find the vertex, focus and directrix of the parabola

y=2x*=5x + 4
First find the point x, where the slope is 0.

dy
-~ =4x — 5
dx X
Then dxqg — 5=0,
Xo =3

Substitute to find y,.
Yo =2(x0)® = 5xp + 4 =3
The vertex is

(XOB .))0) = (%5 %)

We have a = 2, so 1/4a=§. By Theorem 2, the focus is

x *—i—l —51
oYor g )T e )
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The directrix is

1 3
y=Yo— gz V=g

The vertex, axis, focus, and directrix can be used to sketch quickly the
graph of a vertical parabola.

GRAPHING A PARABOLA y=ax*+bx+c

Step 7 Make a table of values of x, y, dy/dx, and d*y/dx* at x > —o0, x = —b/2a
(the vertex), and x — oc.

Step 2 Compute the axis, vertex, focus, and directrix, and draw them.

Step 3 Draw the two squares with sides along the axis and directrix and a corner
at the focus. The two new corners level with the focus, P and Q, are on the
parabola because they are equidistant from the focus and the directrix.

Step 4 Draw the diagonals of the squares through P and Q. These are the tangent
lines to the parabola at P and Q. (The proof of this fact is left as a problem.)

Step 5 Draw the parabola through the vertex, P, and Q, using the table and tangent
lines. The parabola should be symmetrical about the axis x = —b/2a. See
Figure 5.4.8(a).

A horizontal parabola x = ay* + by + ¢ can be graphed by the same
method with the roles of x and y interchanged, as in Figure 5.4.8(b).

y ¥
axis
{ VIF axis
F
V
directrix
by o X
directrix
(a) Vertical (b) Horizontal
Figure 5.4.8
EXAMPLE 2 (Continued) Sketch the parabola y = —ix2

The first two derivatives are

2
dy _ Q=_1

dx ’ dx?
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The only critical point is at x = 0. The table of values follows.

x y dyfdx d?yjdx? Comments
\_Lir_nac — o0 o vertical
x=0 0 0 —1 max, N
11112 - —C vertical

The parabola is drawn in Figure 5.4.9, using Steps 1-5.

el
I
o~

©, -3

Figure 5.4.9

EXAMPLE 3 (Continued) Sketch the parabola y = 2x? — 5x + 4.

The first two derivatives are

dy dzy
T = 4 — — = 4,
dx X =5 dx? 4

The only critical point is at the vertex, where x = 3. The table of values
follows.

x y dy/dx d?y/dx* Comments
! lim o —cC vertical
S/4 7/8 0 + min, u
lim & oc vertical

The parabola is drawn in Figure 5.4.10, again using Steps 1-5.
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y

y=2x*-5x+4

~
il
alw

,.
I
alon

Figure 5.4.10

We can now sketch the graph of any equation of the form
Ax* + Dx + Ey + F =0.

In the ordinary case where both 4 and E are different from zero, proceed as follows.
First, solve the equation for y, obtaining the new equation

_ A, D _F
Y= TE EXTE

Second, use the method in this section to sketch the graph, which will be a vertical
parabola. There are also two degenerate cases. If A = 0, the graph is a straight line.
If E =0, then y does not appear at all, and the graph is either two vertical lines,

one vertical line, or empty.
We can also sketch the graph of any equation of the form

Cy>?+Dx +Ey+ F=0.

In the ordinary case where C and D are different from zero, the graph will be a
horizontal parabola.

PROBLEMS FOR SECTION 5.4

In Problems 1-14, find the focus and directrix, and sketch the given parabola.

1 y=2x? 2 y = 3x?

3 y = —x? 4 y=2—x2

5 y=x%—-2x 6 y=x2+2x+1
7 y=2x*+x-2 8 y=x>—x+1
9 y=3+x—x? 10 y=1-—x—x?
11 y=3x*4+x-1 12 y=13x —x

13 y={x — 2)? 14 y=2x+1)*
15 x=y 16 x=2% -4

17 x=—y*+y+1 18 x=3—(y—2)?

263
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19 Find the equation of the parabola with directrix y = 0 and focus F(2, 2}.
20 Find the equation of the parabola with directrix y = —1 and focus F(0, 0).
21 Find the focus of the parabola with directrix y = 1 and vertex (1, 2).

22 Find the equation of the parabola with focus (—1. — 1) and vertex (— 1. 0).

ELLIPSES AND HYPERBOLAS

In this section we shall study two important types of curves, the ellipses and
hyperbolas. The intersection of a circular cone and a plane will always be either a
parabola, an ellipse, a hyperbola, or one of three degenerate cases—one line, two
lines, or a point. For this reason, parabolas, ellipses, and hyperbolas are called
conic sections. We begin with the definition of an ellipse in the plane.

DEFINITION OF ELLIPSE

Given two points, F, and F,, and a constant, L, the ellipse with foci F, and
F, and length L is the set of all points the sum of whose distances from F,
and F, is equal to L.

If the two foci F, and F, are the same, the ellipse is just the circle with center
at the focus and diameter L. Circles are discussed in Section 1.1.

We shall concentrate on the case where the foci F; and F, are different.
The ellipse will be an oval curve shown in Figure 5.5.1. The orbit of a planet is an
ellipse with the sun at one focus. The eye sees a tilted circle as an ellipse.

Ve
/

ay .
7 major axis

N . .
\_ minor axis
~

AN
Figure 5.5.1 Ellipse PF, + PF, = length AN

The line through the foci F; and F, is called the major axis of the ellipse.
The point on the major axis halfway between the foci is called the center. The line
through the center perpendicular to the major axis is called the minor axis.

An ellipse is symmetric about both its major and its minor axes. That is,
for any point P on the ellipse, the mirror image of P on the other side of either axis
is also on the ellipse. The equation of an ellipse has a simple form when the major
and minor axes are chosen for the x-axis and y-axis.
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THEOREM 1

For any positive a and b, the graph of the equation

2 2
X
% +5
a b

=1
is an ellipse with its center at the origin. There are three cases:
(i) a=>b. Theellipseis a circle of radius a.

(i) a > b. This is a horizontal ellipse, whose major axis is the x-axis, and
whose minor axis is the y-axis. The length is 2a. The foci are at (—c, 0)
and (c, 0), where c is found by

¢t =a*— b2

(iii)) a < b. This is a vertical ellipse whose major axis is the y-axis and
whose minor axis is the x-axis. The length is 2b. The foci are at (0, —c)
and (0, c), where c is found by

¢t =b* — a2

DO\ ”
a

67 ‘0
o~ )

Horizontal Vertical
Figure 5.5.2 2 =a®— b ¢t =h*—q°

This theorem is illustrated by Figure 5.5.2. Here is the proof in case (ii),
a > b. A point P(x, y) is on the ellipse with foci (—¢, 0), (¢, 0) and length 24 if and
only if the sum of the distances from P to the foci is 2. That is,

\/(x+0)2+y2+\/(x—c)2+y2=2a_

Rewrite this as

JE =) +yP=2a— J(x + ) + y*

Square both sides:
x2 —2ex + 2+ y?=4a* —da/(x + )* + y* + x* 4 2ex + 2 + )R
Simplify:

a/(x + ¢)? + y? = a® + cx.
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Square both sides again:
a*(x* + 2cx + ¢ 4+ yH) = a* + 2a%cx + 2x%
Collect the x? and y? terms and simplify.
2a? — D) + yHa?) = a* — a*c? = a¥(d® — c2).
Using the equation b? = g? — ¢?, write this as
x2b% 4 y2a? = a?b?
Finally, divide by a?b? to obtain the required equation

x2 y2

S+ =5=1
at " b?

Setting x = 0 we see that the ellipse meets the y-axis at the two points y = +b.
Also, it meets the x-axis at x = +a. Since all terms are >0, at every point on the
ellipse we have

x
— <1, —a<x<a
a
y?

and ZJ—ZSI’ —bSySb.

Using these facts we can easily sketch the ellipse. It is an oval curve inscribed in the
rectangle bounded by the lines x = +a,y = +b.

Figure 5.5.3 shows a horizontal ellipse (where a > b) and a vertical ellipse
(where a < b).

y y
b
e |
I I
b i {
[ ~ | I |
K_ | !
|
—a ia X -a a X
I I |
L >~ — | =
—b | !
| |
LN/
—b
Horizontal ellipse Vertical ellipse

Figure 5.5.3

2
EXAMPLE 1 Sketch the curve % +y? =1

The curve is an ellipse that cuts the x-axis at +3 and the y-axis at +1. To
sketch the curve, we first draw the rectangle x = +3, y = +1 with dotted
lines and then inscribe the ellipse in the rectangle. The ellipse, shown in
Figure 5.5.4, is horizontal.
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Figure 5.5.4

EXAMPLE 2 Sketch the curve 4x2 + y?> =9 and find the foci.
The equation may be rewritten as

30447 =1
The graph (Figure 5.5.5) is a vertical ellipse cutting the x-axis at +3 and the
y-axis at +3.

Figure 5.5.5

By Theorem 1, the foci are on the y-axis at (0, +c¢). We compute ¢ from the
equation

c=b*—a’
a and b are the x and y intercepts of the ellipse, a = 3, b = 3. Thus
=3 - =¥
c = /% ~ 2.598.
The foci are at (0, +2.598).

We turn next to the hyperbola. A hyperbola, like an ellipse, has two foci.
However, the distances between the foci and a point on the hyperbola must have a
constant difference instead of a constant sum.
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DEFINITION OF HYPERBOLA

Given rwo distincr points, F, and F,, and a constant, I, the hyperbola with
foci Fy and F, and difference [ is the set of all points the difference of whose
distances from F| and F, is equal to l.

In this definition, / must be a positive number less than the distance between
the foci. A hyperbola will have two separate branches, each shaped like a rounded V.
On one branch the points are closer to F; than F,; and on the other branch they
are closer to F, than F,. Figure 5.5.6 shows a typical hyperbola. The path of a comet
on an orbit that will escape the solar system is a hyperbola with the sun at one focus.
The shadow of a cylindrical lampshade on a wall is a hyperbola (the section of the
light cone cut by the wall).

The line through the foci is the transverse axis of the hyperbola, and the
point on the axis midway between the foci is the center. The hyperbola crosses the
transverse axis at two points called the verrices. The line through the center perpen-
dicular to the transverse axis is the conjugate axis. The hyperbola never crosses its
conjugate axis. A hyperbola is symmetric about both axes. A simple equation is
obtained when the transverse and conjugate axes are chosen for the coordinate axes.

transver.
 tra erse
7 axis

N .
/ N conjugate
Ve axis

Figure 5.5.6 Hyperbola

THEOREM 2

For any positive a and b, the graph of the equation

X2
b a

=1

is a hyperbola with its center at the origin. Its transverse axis is the y-axis,
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and its conjugate axis is the x-axis. The vertices are at (0, +b), and the foci
are at (0, +c¢), where ¢ is found by

a* + b* =
The graph of the equation
2
2 !
is a hyperbola with similar properties with the roles of x,a and y,b reversed. The

proof of Theorem 2 uses a computation like the proof of Theorem 1 on ellipses

and is omitted.
Using derivatives and limits, we can get additional information that is

helpful in sketching the graph of a hyperbola. By solving the equation

x2 oy
Z -

lower branch: y= —— Ja* + x2%
a

We concentrate on the upper branch. Its first two derivatives, after some algebraic
simplification, come out to be

d b: a2
y X _JZ’ = ab(a® + x?)7¥2,

E a a /az + xz’ dx
Thus the first derivative is zero only at x = 0 (the vertex), and the second derivative
is always positive. We have the following table of values for the upper branch.

X y  dy/dx d*y/dx* Comments
lim o —bfa 0 decreasing

0 b 0 bja* minimum, U
lim ®© bja 0 increasing

All the limit computations are easy except for dy/dx, which we work out for x — oc.
Let H be positive infinite.

bx

o = e
-

_ St[_b_} _b

oJPH 241] a
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We carry out a similar computation for the limit as x - — oo,

im 2o fim 2
xﬂ—wdx X oo a,/a2+x2
a/@ + (—H)

_ St[ b ] __b
aJa®H % + 1 a
The table shows that the upper branch is almost a straight line with slope

—b/a for large negative x and almost a straight line with slope b/a for large positive x.
In fact, we shall show now that the lines

y = bx/a, y = —bx/a

are asymptotes of the hyperbola. That is, as x approaches oo or — oo, the distance
between the line and the hyperbola approaches zero. We show that the upper branch
approaches the line y = bx/a as x — cc; that is,

b
lim [7,/a2 + x? —é{:| =0.
x=ow | A a
Let H be positive infinite. Then
b bH b
E 612 +.H2—7=5[«/(12+H2—H]
_12|i(\/a2+H2—H)(./a2+H2+H)}
a Ja*+ H* + H
b a*+ H* - H?
a./a* + H* + H
=ab(\/a* + H> + H)™ ..

This is infinitesimal, so the limit is zero. Here are the steps for graphing a hyperbola
yibt — x%*a? = 1.

X2

GRAPHING A HYPERBOLA 15— —=1
b a
Step 7 Compute the values of a and b from the equation. Draw the rectangle with
sidesx = +a,y = +b.

Step 2 Draw the diagonals of the rectangle. They will be the asymptotes.
Step 3 Mark the vertices of the hyperbola at the points (0, +b).

Step 4 Draw the upper and lower branches of the hyperbola. The upper branch
has a minimum at the vertex (0, b), is concave upward, and approaches the
diagonal asymptotes from above. The lower branch is a mirror image.
See Figure 5.5.7,
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y
\\ A
\ b // \\\
N \\\
\\ // ~
N
\ / S
X
—a / a —_ e
/ \,
//
-
/ \ w7
/b P
4 \ #
Figure 5.5.7 Figure 5.5.8

A hyperbola of the form

x>y

2
a® bz—__1

is graphed in a similar manner, but with the roles of x and y reversed. There is a
left branch and a right branch, which are vertical at the vertices (+a, 0).

EXAMPLE 3 Sketch the hyperbola 4y®> — x> =1 and find its foci.
First compute a and b.

x? = x*/a?,

4y =y b, b
a

1
2
L.

The rectangle has sides x = +1, y = +4, and the vertices are at (0, +1).
The hyperbola is sketched using Steps 1-4 in Figure 5.5.8. The foci are
at (0, +-¢) where

=+ =17+F?*=125
c=./125~ 1.118.

Using the method of this section, we can sketch the graph of any equation
of the form

Ax> + Cy? + F = 0.
In the ordinary case where 4, C, and F are all different from zero, rewrite the
equation as
A4 xP+ Cyr =1,
where 4, = —A/F, C; = —C/F. There are four cases depending on the signs of
A; and C,, which are listed in Table 5.5.1.
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Table 5.5.1

A, C, Graphof 4,x* + C,y* =1

0 0 i i
> > ellipse S+ ==1
b a®  b?
0 0 hyperbola . V2
> < erbola — - = =1
yp 25
2 2
<0 >0 hyperbola 5 —— =1
a

<0 <0 empty

If one or two of A, C, and F are zero, the graph will be degenerate (two
lines, one line, a point, or empty).

PROBLEMS FOR SECTION 5.5

In Problems 1-12, find the foci and sketch the given ellipse or hyperbola.

1 x2 4y =1 2 x24+h?t=1

3 X+ 4r=1 4 =2+ hi=1

5 Ox? 4 4y? = 16 6 x2 492 =4

7 y—dx? =1 8 e

9 9y — x2 =4 10 4y —dx? =1

xZ )2
1 X yr=1 12 5-%:1
13 Prove that the hyperbola x%/a? — y*/b* = 1 has the two asymptotes y = bx/a and
y = —bx/a.

5.6 SECOND DEGREE CURVES

A second degree equation is an equation of the form
¢)) Ax?> 4+ Bxy + Cy? + Dx + Ey + F = 0.

The graph of such an equation will be a conic section: a parabola, ellipse, hyperbola,
or one of several degenerate cases. In Section 5.4 we saw that the graph of a second
degree equation of one of the forms

) Ax* + Dx+ Ey+ F=0
or
3) Cy* +Dx+Ey+F=0

is a parabola or degencrate. In Section 5.5 we saw that the graph of a second degree
equation of the form
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4) AX* + Cy* + F =0

is an ellipse, a hyperbola, or degenerate.

In this and the next section we shall see how to describe and sketch the
graph of any second degree equation. We will begin with the Discriminant Test,
which shows at once whether a nondegenerate curve is a parabola, ellipse, or
hyperbola. The next topic in this section will be translation of axes, which can change
any second degree equation with no xy-term,

) Ax? + Cy* + Dx + Ey + F =0,

into an equation of one of the simple forms (2), (3), or (4).

In the following section we will study rotation of axes, which can change
any second degree equation into an equation of the form (5) with no xy-term. We
will then be able to deal with any second degree equation by using first rotation
and then translation of axes.

Here is the Discriminant Test.

DEFINITION

The quantity B> — 4AC is called the discriminant of the equation
Ax?> 4+ Bxy + Cy>* + Dx + Ey+ F = 0.

DISCRIMINANT TEST

If we ignore the degenerate cases, the graph of a second degree equation is:

A parabola if the discriminant is zero.
An ellipse if the discriminant is negative.
A hyperbola if the discriminant is positive.

For example, the equation
xy—1=0
has positive discriminant 1> — 4 - 0 = 1, and its graph is a hyperbola. The equation
2>+ xy+y*—1=0

has negative discriminant 12 — 4 2.1 = —7, and its graph is an ellipse.

The degenerate graphs that can arise are: two straight lines, one straight
line, one point, and the empty graph. The Discriminant Test alone does not tell
whether or not the graph is degenerate. However, a degenerate case can usually be
recognized when one tries to sketch the graph. For the remainder of this section
we shall ignore the degenerate cases.

We now turn to the method of Translation of Axes. This method is useful
for graphing a second degree equation with no xy-term,

Ax* + Cy* + Dx + Ey+ F =0.

If A or C is zero, the graph will be a horizontal or vertical parabola, which can be
graphed by the method of Section 5.4. If both 4 and C are nonzero, the graph turns
out to be an ellipse or hyperbola with horizontal and vertical axes X and Y, as in
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Figure 5.6.1. In the method of Translation of Axes, we take X and Y as a new pair
of coordinate axes and get a new equation for the curve in the simple form

AX 4+ CY* + F, =0.

) Y
3 Y1

L1 \
Iy AT
X X

|

|

|

i

|

E

Figure 5.6.1

This curve can be sketched as in Section 5.5. The name “Translation of Axes” means
that the original coordinate axes x and y are replaced by new coordinate axes X
and Y, which are parallel to the original axes,

The new axes are found using a procedure from algebra called “completing
the squares.” This procedure changes an expression like Ax* + Dx into a perfect
square plus a constant.

FORMULA FOR COMPLETING THE SQUARES
Let A be different from zero. Then
Ax? + Dx = AX? + K,

D —-D?
where X = — =
x+2A, K VIR

For example,

4x? — 3x = 4X?* — 9/16

where X = x — 2.

We shall illustrate the method of Translation of Axes with an example and
then describe the method in general.

EXAMPLE 1 Sketch the curve 4x? — y? — 16x — 2y + 11 = 0.
Step 7 Apply the Discriminant Test to determine the type of curve,
B2 —44C =0* —4-4.(—1) = 16.


hjkeisler
Text Box
9/16
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The discriminant is positive, so the graph is a hyperbola.

Step 2 Simplify by completing the squares. This is done by putting

D E
X:.\-{-ﬂ, Y:y+2—6
and writing the original equation in terms of X and Y.
—16
X=X+m—x—2, x=X+2
Y—y4——2 )+ 1 Y —1
= ) _— = P —_
Y 2-(—D) Y ) )

X+ - (Y -1 =-16(X+2)—-20Y -D+11=0
X2 +4X +4) —16(X +2) — (Y2 =2Y + ) —=2AY =1+ 11 = 0.
The X and Y terms cancel, and
4X2 416 —32— Y2 —14+2+411=0,
4X? - Y2 -4 =0.
Step 3 Draw dotted lines for the X and Y axes, and sketch the curve as in Section
5.5. This is a hyperbola in the (X, Y)-plane. The X-axis is the line Y = 0,

or y = —1. The Y-axis is the line X =0, or x = 2. The graph is shown
in Figure 5.6.2.

4x* —y* — 16x — 2y + 11 = 0
Figure 5.6.2 Example 1 y T

METHOD OF TRANSLATION OF AXES

When to Use  To graph an equation of the form Ax* + Cy*+Dx+Ey+F =0 where
A and C are both nonzero.

Step 1 Use the Discriminant Test to determine the type of curve.



276

5.7

5 LIMITS, ANALYTIC GEOMETRY, AND APPROXIMATIONS

Step 2 Completing the Squares: Put

X=x+2 Y=yt L
TXToq =V Toc

and rewrite the original equation in terms of X and Y. The new equation will
have the simple form

Ax?+ Cyv2 + F, =0,
where F, is a new constant.

Step 3 Draw dotted lines for the X and Y axes and sketch the curve as in Section 5.5.

PROBLEMS FOR SECTION 5.6

In Problems 1-6, given that the graph is nondegenerate, use the Discriminant Test to determine
whether the graph is a parabola, ellipse, or hyperbola.

1 x2 4+ 2xy — 33?4+ 5x 4+ 6y — 100=0

2 4x? — 8xy 4+ 6y + 10x — 2y —20=0

3 4x* +dxy+ 3  + Tx + 8y =0

4 9x* 4+ 6xy+ ¥y 4+ 6x—22=0

5 X2+ 5xy+ 102 —16=0

6 4xy 4+ S5x — 10y + 1 =0
In Problems 7-18, use the method of Translation of Axes to sketch the curve.

7 2+ —dx+3=0 8 P F -6y +6=0

9 x}— 3P 44x—2y+2=0 10 —x2 4+ F8x—6y—16=0
11 X2+ 4?2 —4dx +24y+36=0 12 4x? —9y? + 8x + 18y — 41 =0
13 Ox? — 4y% — 36x — 24y — 36 =0 14 —x? 4 4p? + 16y +12=0

15 —x? 43?2 +8x+30y+56=0 16 5x2 42y + 10x + 12y + 28 =0
17 16x% + 9y* — 320x — 108y -+ 1780 = 0

18 25x% + 4y% + 250x — 40y + 625 =0

ROTATION OF AXES

We have seen how to graph any second degree equation with no xjy-term. These
graphs are parabolas, ellipses, or hyperbolas with vertical and horizontal axes.
When the equation has a nonzero xy-term, the graph will have diagonal axes. By
rotating the axes, one can get new coordinate axes in the proper direction. The
method will give us a new equation that has no xy-term and can be graphed by
our previous method.

Suppose the x and y axes are rotated counterclockwise by an angle «, and
the new coordinate axes are called X and Y, as in Figure 5.7.1. A point P in the
plane will have a pair of coordinates (x, y) in the old coordinate system and (X, Y)
in the new coordinate system. The old and new coordinates of P are related to each
other by the equations for rotation of axes.
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EQUATIONS FOR ROTATION OF AXES

x=Xcosa — Ysina,

y=Xsino + Y cos o
These equations can be seen directly from Figure 5.7.2. If we substitute the equations
for rotation of axes into a second degree equation in x and y, we get a new second
degree equation in the coordinates X and Y.
EXAMPLE 1

Find the equation of the curve

xy—4=0,
rotation of 30 degrees (Figure 5.7.3).

with respect to the new coordinate axes X and Y formed by a counterclockwise
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In this example,
L 3
o = 30°, sinazi, cosoc:\/T—.
J3, 1 1, V3
=-¥'x__v C=oX + Yy
Thus b's > 5 ) 3 + 3
Substitute into the original equation and collect terms.
xy—4=20,
3 A
\/3 1 1 \/3
SoX - Y= =Y} -4=0
( 2 2 ) (ZX * 2 4 ’
\/3 1 \/§
YIXrP 4+ XY -YTY?-4=0.
4 + 2 4
Given any second degree equation
(n Ax* + Bxy + Cy* + Dx + Ey + F=0

and any angle of rotation #, one can substitute the equations of rotation and collect
terms to get a new second degree equation in the X and Y coordinates,

2) AX*+B XY+ C, Y’ +D X +EY+F =0
It can be shown that the discriminant is unchanged by the rotation; that is,
B? — 44C = B} — 44,C,.

This gives a useful check on the computations.
In Example 1 above, the original discriminant is
B2 —4AC=1>-4.0.-0=1.

The new equation has the same discriminant,

1\? /’6 \/§ 1 3
2 _ YR Y RVAEAT (VA LR S
B? — 4A4,C, <2> 4(4)( 4) ;o=

The trouble with Example 1 is that the new equation is more complicated
than the original equation, and in particular there is still a nonzero X Y-term. We
would like to be able to choose the angle of rotation z so that the new equation
has no X Y-term, because we could then sketch the curve. The next theorem tells
us which angle of rotation is needed.

THEOREM 1

Given a second degree equation
Ax* + Bxy + Cy? + Dx + Ey + F =0
with B nonzero. Rotate the coordinate axes counterclockwise through an
angle o for which
- C
B

A
cot (2z) =
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Then the equation
A X*+B XY+ C,Y*+ D, X+EY+F =0

with respect to the new coordinate axes X and Y has XY-term B; = 0.

This theorem can be proved as follows. When the rotation equations are
substituted and terms collected, the X Y coeflicient B; comes out to be

B, = B(cos? o — sin? o) — 2(A — C)sin & cos o
From trigonometry,
cos? o — sin? o = cos (20), 2 sin o cos o = sin (2e).
Thus B, = Bcos (20) — (A — C) sin (2u).
So B, = 0 if and only if
Bcos(Qa) — (A — O)sin 20) = 0,
cos(2a)_ A-C _0
sin (2¢) B ’
A-C
5

or cot 2u) =

As shown in Figure 5.7.4, « is the angle between the original coordinate
axes and the axes of the parabola, ellipse, or hyperbola.

We are now ready to use rotation of axes to sketch a second degree curve,
We illustrate the method for the curve introduced in Example 1.

EXAMPLE 2 Sketch the curve xy — 4 = 0.
Step 7 Apply the Discriminant Test to find the type of curve.
B> —44C=1*—-4.0.-0=1.
The discriminant is positive, so the curve is a hyperbola.

Step 2 Find an angle o with

A-C
cot (20) = 5

cot 20) = 0—19 =0.

20 = 90°, o = 45°

Step 3 Change coordinate axes using the rotation equations.

V2 V2

cosaz—z—, sin o = ~—.

2
x=Xcosoc—Ysinoc=\/75 -——\éiY.

2y

y=Xsina+ Ycosa = 5 >
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Figure 5.7.4

Substituting, we get

xy —4=0,

<£X—£Y)-<£X+ﬁY)—4=O,

2 2 2 2

1 1
—X*—_Y?—4=0
3 5 4=0
As a check, the discriminant is still 02 — 4« (3) « (=) = 1.
Step 4 Draw the X and Y axes as dotted lines and sketch the curve.

The new axes are found by rotating the old axes by o = 45°. The curve is
shown in Figure 5.7.5.

METHOD OF ROTATION OF AXES

When to Use To graph an equation of the form Ax* + Bxy + Cy* + Dx + Ey + F
= 0 where B is nonzero.

Step 1 Use the Discriminant Test to determine the type of curve.
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y

Figure 5.7.5 Example 2

Step 2 Find an angle o with
-C

A
cot 20) = 3

Step 3 Change coordinate axes using the Rotation Equations. The new equation
has the form

AX2+CY*+ DX+ EY+F =0,
where x = X cos oo — Y sin ¢, y=Xsina+ Y coso.

Step 4 Draw the X- and Y-axes by rotating the old axes through the angle o. The
curve can now be sketched by our previous method, using Translation of Axes
if necessary.

Here is an overall summary of the use of rotations and translations of axes.
The problem is to graph an equation of the form

Ax* + Bxy + Cy* + Dx + Ey + F = 0.
By Rotation of Axes, we get a new equation of the simpler form
A X2+ C, Y+ D, X+ EY+F =0

Ifeither A, = Oor C, = 0, the curve is a parabola that can be sketched by the method
of Section 5.4. If A, and C, are both nonzero, Translation of Axes gives us a new
equation of the simpler form

A2U2+BzV2+F2 :0.
The graph of this equation is an ellipse or hyperbola, which can be sketched by the

method of Section 5.5. The degenerate cases—two lines, one line, a point, or an
empty graph—may also occur.
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PROBLEMS FOR SECTION 5.7

In Problems 1-10, rotate the axes to transform the given equation into a new equation with
no X Y-term. Find the angle of rotation and the new equation.

1 xp+4=0 2 2+ xy+yr=2

3 xP—dxy+ =1 4 xT 4+ 3xy 4yt =4

5 X423y — P =T 6 Sx2— /3xy + 42 =6

7 x? 4+ xy=3 8 2x —xy—y? =1

9 42— iyt yi=s 10 2x 4+ /3xy -y = 10

11 Prove that any second degree Equation (1) in which 4 = C can be transformed into
an equation with no X' Y-term by a 45° rotation of axes.

12 Prove that if we begin with a second degree equation with no first degree terms,
Ax? + Bxy + Cy?> + F = 0, and then rotate axes, the new equation will again have
no first degree terms.

13 Prove that the sum 4 + C is not changed by rotation of axes. That is, if Equation (2)
is obtained from Equation (1) by rotation of axes,then 4 + C = 4, + C,.

14 Prove that the discriminant of a second degree equation is not changed by rotation

of axes. That is, if Equation (2) is obtained from Equation (1) by rotation of axes, then
B2 — 44C = B? — 44,C,.

5.8 THE ¢, 6§ CONDITION FOR LIMITS

The traditional calculus course is developed entirely without infinitesimals. The
starting point is the concept of a limit. The intuitive idea of lim,_, f(x) = L is: For
every real number x which is close to but not equal to ¢, f(x) is close to L.

It is hard to make this idea into a rigorous definition, because one must clarify
the word “‘close”. Indeed, the whole point of our infinitesimal approach to calculus is
that it is easier to define and explain limits using infinitesimals. The definition of
limits in terms of real numbers is traditionally expressed using the Greek letters
& (epsilon) and & (delta), and is therefore called the ¢, & condition for limits.

The ¢, 6 condition will be based on the notion of distance between two real
numbers.

DEFINITION

The distance between two real numbers x and ¢ is the absolute value of their
difference,

distance =

X — ¢l

xiswithindof cif |x —c¢|] =94,
x is strictly within é of ¢ if |x — ¢| < 6.

Notice that the distance |x — c¢| is just the difference between the larger and
the smaller of the two numbers x and c¢. This is a place where the absolute value sign
is especially convenient. The following simple but helpful lemma is illustrated in
Figure 5.8.1.
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Figure 5.8.1 (b) x strictly within 5 of ¢

LEMMA
(1) xiswithin é of c if and only if
c—8<x=<c+o.
(i) x is strictly within 6 of ¢ if and only if

c—o<x<c+ 6.

PROOF (i) Subtracting ¢ from each term we see that
c—0<x<Z<c+é

if and only if —-6<x—c<4,

which is true if and only if |[x — ¢] < 6.

The proof of (ii) is similar.

We shall repeat our infinitesimal definition of limit from Section 3.3 and then
write down the ¢, 6 condition for limits. Later we shall prove that the two definitions of
limit are equivalent to each other.

Suppose the real function f is defined for all real numbers x # ¢ in some
neighborhood of c.

DEFINITION OF LIMIT (Repeated)

The equation
lim f(x) = L

x—c

means that whenever a hyperreal number x is infinitely close to but not equal
to ¢, f(x) is infinitely close to L.

e, 8 CONDITION FOR Iin‘cl f(x) =1L

For every real number ¢ > 0 there is a real number & > Q which depends on ¢
such that whenever x is strictly within & of ¢ but not equal to ¢, f(x) is strictly
within ¢ of L. In symbols, if 0 < |x — ¢| < , then |f(x) — L| < «.
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In the & § condition, the notion of being infinitely close to ¢ is replaced by
being strictly within J of ¢, and being infinitely close to L is replaced by being strictly
within ¢ of L. But why are there two numbers ¢ and J, instead of just one? And why
should § depend on £? Let us look at a simple example.

. . 10x2
EXAMPLE 1 Consider the limit Iim{1l + ;) = I

x—0 X

When x = 0, the function f(x) = 1 + 10x?%/x is undefined. When x is a real
number close to but not equal to 0, f(x) is close to 1.

Now let us be more explicit. How should we choose x to get f{(x) strictly
within £ of 17 To solve this problem we assume x is strictly within some

distance d of 0 and get inequalities for f{x).
By the lemma, we must find a 6 > 0 such that whenever

—d<x<¢o and x #0,

we have i< flx)y<1+5%.
Assume —0 < x and x < 0.
Then — 105 < 10x and 10x < 106
. 10x? 10x?
— 108 < *% and Y106 ifx#£0
X X

1—10(3<1+1)0\:L2 and 1+1)Ojj<1+105
1 — 105 < f(x) < [ + 106,
If we set & = &5, then
I —L<fx)<1+4
This shows that
whenever —d5 < x <35 and x #0, 1 -t<fx)<1+1
In other words,
whenever 0 < |x| < <5, |f(x) — 1] <1

A similar computation shows that for each ¢ > 0, if 0 < [x] < &/10 then
|/(x) — 1| < & Thus the ¢, 6 condition for lim,_ 4 (1 + 10x?/x) = [ is true,
and, for a given ¢, a corresponding d is § = ¢&/10.

EXAMPLE 2 In the limit
lim x? = 4,

x—2
find a 6 > 0 such that whenever 0 < |x — 2| < &, |x? — 4] < &.

By the Lemma, we must find § > 0 such that whenever
2—-0<x<2+J and x #2,
4 — {5 <x? <4+ 4.
Assume that 2-0<x and x<2+44.
As long as 2 — J and x are positive we may square both sides,

4 —45+ 6% <x?* and x*> <4 +45+ 82
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4+ (—46 +6*) < x? and x* <4+ (46 + %)
Now take § small enough so that
—f5 < —46+ 6% and 46+ 82 <{y.
For example, § = 5 will do. Then
4 -4 <x*<4+4.

Thus whenever 0 < |x — 2| < &5, |x? — 4] < 5.

Notice that any smaller value of 8, such as § = 145, will also work.

In geometric terms, the ¢, § condition says that for every horizontal strip (of
width 2¢) centered at L, there exists a vertical strip (of width 2§) centered at ¢ such
that whenever x # c¢ is in the vertical strip, f(x) is in the horizontal strip. The graphs

in Figure 5.8.2 indicate various horizontal strips and corresponding vertical strips.
They should be examined closely.

fix) f(x)
-
I
]
A/
/ i
/ i -
X 7 @] P v
(a)
f(x) fx)
5
~ 4 N

jiVa\ X ik V\/X
/I T - (N I O
/ 19} c x / 0 ¢ x

(b)
f(x) fix)

o Ja\ A
L/"\ﬁ’f\l\ L}Z‘;Vf’l \
Vs VAR Y
/ 0] P x 0 ¢ e

(©)

Figure 5.8.2
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There are also ¢, & conditions for one-sided limits and infinite limits. The
three cases below are typical.

g, 8§ CONDITION FOR lim f(x) =L
For every real number ¢ > 0, there is a real number 6 > 0 which depends on ¢
such that whenever ¢ < x < ¢ + 9, we have |f(x) — L| < e,

Intuitively, when x is close to ¢ but greater than ¢, f(x) is close to L.

e, 8 CONDITION FOR lim f(x) = L

X7

For every real number ¢ > O there is a real number B > 0 which depends on ¢
such that whenever x > B, we have | f(x) — L| < e.

Intuitively, when x 1s large, f(x) is close to L.

g, 8 CONDITION FOR lim f(x) = =
xX— i

For every real number A > Q there is a real number B > 0 which depends on A
such that whenever x > B, we have [(x) > A.

Intuitively, when x is large, f(x) is large.

EXAMPLE 3 In the limit

3
1im2+;=2,

1=

find a real number B > 0 such that whenever t > B, (2 + 3/t) is strictly
within 1/100 of 2. '

To find B, we assume ¢ > B and ¢ > 0, and get inequalities for 2 + 3/t.

0<t, t > B
0<§w % 3
t t B

S| w

3
2<2+—[, 2+%<2+

Now choose B so that 3/B < 1/100. The number B = 300 will do. It follows
that whenever ¢ > 300,

3
224 <2 g
T

3 {
and 2 + - is strictly within g = — of 2.
[ISSI‘IC y within ¢ 10002

EXAMPLE 4 In the limit
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find a B > 0 such that whenever x > B, x> — x > 10,000.

This time we assume x > B and get an inequality for x> — x. We may
assume B > 1.

x>B>1
x—1>B—-1>0

x(x — 1) > BB — 1)
x*—x>B?*—-B.

Now take a B such that B> — B > 10,000. The number B = 200 will do,
because (200)* — 200 = 39800. Thus whenever x > 200, x> — x > 10,000.

We conclude this section with the proof that the ¢, § condition is equivalent
to the infinitesimal definition of a limit.

THEOREM 1

Let f be defined in some deleted neighborhood of c. Then the following are
equivalent :

(@) lim,. f(x)= L.
(i) The &, & condition for lim,_,,. f(x) = L is true.

PROOF We first assume the ¢, & condition and prove that
lim f(x) = L.

x—=¢

Let x be any hyperreal number which is infinitely close but not equal to c.
To prove that f(x) is infinitely close to L we must show that

for every real ¢ > 0, If(x) —L|<e

Let ¢ be any positive real number, and let § > 0 be the corresponding number
in the ¢, 6 condition. Since x is infinitely close to ¢ and ¢ > 0 is real, we have

O0<|x—c|l <.
By the &, 6 condition and the Transfer Principle,
If(x) — L] <e
We conclude that f(x) is infinitely close to L. This proves that
lim f(x) = L.

x—c

For the other half of the proof we assume that

lim f(x) = L,
and prove the g, § condition. This will be done by an indirect proof. Assume
that the ¢, & condition is false for some real number ¢ > 0. That means that
for every real 6 > 0 there is a real number x = x(8) such that

1) x#e  x—d<d  |f(x)—Ll=e

Now let 6, > 0 be a positive infinitesimal. By the Transfer Principle,
Equation (1) holds for §,. Therefore x, = x(8,) is infinitely close but not
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equal to ¢. But since
[fGe) = LI = ¢
and ¢ is a positive real number, f(x,) is not infinitely close to L. This con-
tradicts the equation
lim f(x) = L.

X—¢

We conclude that the ¢, § condition must be true after all.

The theorem is also true for the other types of limits.
The concept of continuity can be described in terms of limits, as we saw in

Section 3.4. Therefore continuity can be defined in terms of the real number system

only.

COROLLARY

The following are equivalent.

(i) [ is continuous at c.
(i) For every real ¢ > O there is a real § > 0 depending on & such that:

whenever |x — ¢| < 4, [f(x) — f(c)] <e.

PROOF Both (i) and (ii) are equivalent to

lim /(x) = /(e)

Intuitively, this corollary says that f is continuous at ¢ if and only if f(x) is

close to f (c) whenever x is close to ¢.

PROBLEMS FOR SECTION 5.8

1

In the limit lim.,, 10x = 40, find a & > 0 such that whenever 0 < |x — 4| < 4,
|10x — 40| < 0.01.

In the limit lim,_, (x? — 4x)/2x = —2, find a § > 0 such that whenever 0 < |x| < 4,
[(x? — 4x)/2x — (-2)| < O.1.

In the limit lim, ., I/x = /2, find a § > 0 such that whenever 0 < |x — 2| < 4,
I/x — 1/2] < 0.01.

In the limit lim,_, _, x* = —27, find a § > 0 such that whenever 0 < [x — (—=3)| < 4,
[x* — (=27)] < 0.01.

In the limit lim L+ \/: = 0, find a & > 0 such that whenever 0 < x < ¢, \ﬂ < 0.01.
In the limit lim _,. /x> — 4 = 0, find a & > O such that whenever 2 < x < 2 + 4,
\/x—l— 4 <01

In the limit lim,.,- /1 — x* = 0, find a § > 0 such that whenever 1 —§ < x < I,

J1 = x* <0.001.

In the limit lim,,,- /6 — 3x =0, find a é > 0 such that whenever 2 — § < x < 2,

6 — 3x <001l

In the limit lim,,ox 2 = o¢, find a & > 0 such that whenever 0 < |x] < §,x~
10,000.

2>
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10 In the limit lim, 4 16/x* = o, find a 6 > 0 such that whenever 0 < |x| < §, 16/x* >
10,000.

11 In the limit lim, 4+ 1/10f = o0, find a 6 > 0 such that whenever 0 < ¢ < §,1/10t > 100.

12 In the limit lim,_,. 14 — t) = —oo, find a § > 0 such that whenever 4 <t < 4 + §,
1/(4 — £) < —100.

13 In the limit lim,_ 4+ l/f = o0, find a & > 0 such that whenever 0 < x < §, 1/\/;: >
100.

14 In the limit lim,_ 4. 1/x* = oo, finda § > Osuch that whenever 0 < x < §, 1/x> > 1000.

15 In the limit lim__,- 1/(1 — x?) = oo, find a § > 0 such that whenever 1 — § < x < I,
1/(1 — x%) > 100.

16 In the limit lim__,, - 5/./2 — x = oo, find a é > 0 such that whenever 2 — § < x < 2,
5//2 — x > 100.

17 In the limit lim,_, , 1/(1 + 4t) = 0, find a B > 0 such that whenever t > B, 1/(1 + 41) <
0.01.

18 In the limit lim,_, , 1/t> = 0, find a B > O such that whenever t > B, 1/t> < 0.01.

19 In the limit lim,_, ,, 2¢> — 5t = oo, find a B > 0 such that whenever ¢t > B, 2t> — 5t >
1000.

20 In the limit lim,_, , £3 + t> — 5 = co, find a B > 0 such that whenever t > B, 13 + 2 —
5 > 1000.

21 In the limit lim,_, , ./5x + 1 = oo, find a B > Osuch that whenever x > B, /5x + 1 >
100.

22 In the limit lim,,_,.¥x — 1= —oo, find a B> 0 such that whenever x < —B,
Ix—1< —100.

23 State the ¢, 6 condition for the limit lim,_, .- f(x) = L.

24 State the &, d condition for the limit lim, ,, f(x) = oo.

25 State the ¢, 6 condition for the limit lim,__, , f(x) = — 0.

26 Prove that lim,_,, f(x) = co if and only if the ¢, é condition for this limit holds: For

every A > 0O there is a B > 0 such that whenever x > B, f(x) > A.

NEWTON’'S METHOD

The Increment Theorem for derivatives shows that when f'(c) exists and x = ¢, f(x)
is infinitely close to the tangent line f(c) + f'(c)(x — ¢) even compared to x — c.
Thus intuitively, when x is real and close to ¢, f(x) is closely approximated by the
tangent line f(c) + f'(c)(x — ¢). Newton’s method uses the tangent line to
approximate a zero of f(x). It is an iterative method that does not always work
but usually gives a very good approximation.

Consider a real function fthat crosses the x-axis as in Figure 5.9.1. From the
graph we make a first rough approximation x, to the zero of f(x). To get a better
approximation, we take the tangent line at x, and compute the point x, where the
tangent line intersects the x-axis. At x,, the curve f(x) is very close to zero, so we
take x, as our new approximation. The tangent line has the equation

y=f )+ ) — xp)

We get a formula for x, by setting y = 0 and x = x, and then solving for x,.

289
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¥y

) X
\_/ xz XI

Figure 5.9.1 S&x)

0= f(x)) +f(x)(x; — x1)
. fxy)
J(xy) .
We may then repeat the procedure starting from x, to get a still better approximation
x5 as in Figure 5.9.2,

Xy =Xy

. Sf(x3)
P f(x)’

X3 =X

Figure 5.9.2 Six)

NEWTON'S METHOD
When to Use We wish to approximate a zero of f(x), where f'(x) is continuous and

not close to zero, as in Figure 59.1.

Step 1 Sketch the graph of f(x), and choose a point x, near the zero of f(x). x; is
the first approximation.

Step 2 Compute f'(x).
Step 3 Compute the second approximation

Y. — S(xp)
RACH
Step 4 For a closer approximation repeat Step 3. The (n + 1)st approximation is
given by

Xy =
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e Je
n+t n f,(xn) '
As a rough check on the accuracy, compute f(x,) and note how close it is

to zero.
Steps 3 and 4 can be done conveniently on a hand calculator.

Warning: Since Newton’s method involves division by f'(x,), avoid
starting at a point where the slope is near zero. Figure 5.9.3 shows that when the
slope is close to zero, the tangent line is nearly horizontal and the approximation
may be poor.

y

T

fx)

Figure 5.9.3

EXAMPLE 1 Approximate a zero of f(x) = x> + 2x? — 5 by Newton’s method.

Step 7 The graph is shown in Figure 5.9.4. We choose x; = 1 as our first approxi-

mation.
Step 2 f'(x) = 3x* + 4x
S(x1) (=2) 9
Step 3 x5, =x; — =1—-—-——==-~ 1285
TN fx) 77

Figure 5.9.4
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f(xz)_, X§+2x§—5
o) = X, 3 T 4x, 1.2430

As a check we compute

Step 4 X3 =X,

f(x3) = x3 + 2x3 — 5 ~ 001
One more iteration gives much more accuracy:
X x3+2x3-5
PRI ACEV RN e Bl
f (x3) 3X3 + 4X3
f(xq) = x3 + 2x2 — 5 ~ 0.000007

~ 1.241897

EXAMPLE 2 Approximate the fifth root of 6 by Newton’s method.
Step 7 We must find the zero of f(x) = x* — 6. The graph is shown in Figure 5.9.5.

Choose x, = L.5.
Step 2 f'(x) = 5x*
5
x7—6
Step 3 x, = Xy — ~ 1437
tep Xy Y] 5’\“;
5
x; —6
Step 4 x3 =X, — 22 ~ 143102
5x5

As a check we compute
(x3)° ~ 6.001

In this example more iterations would be necessary if our first approximation
had not been chosen as well. For instance, starting with x;, = | we would not reach

S
-+

Figure 5.9.5
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the approximation 1.431 until x¢, obtaining the successive approximations

x, =1, X, =2, x5 = 1.675, x, = 1.49245,
x5 = 1.43583, xe = 1.43100.

EXAMPLE 3 Approximate the point x where sin x = In x.

As one can see from the graphs of sin x and In x in Figure 5.9.6, sin x and
In x cross at one point x, which is somewhere between x = 1 (where In x
crosses the x-axis going up) and x = n (where sin x crosses the x-axis
going down). To apply Newton’s method, we let f(x) be the function

f(x)=sinx —Inx

shown in Figure 5.9.7. We wish to approximate the zero of f(x).

Inx

sin x

Figure 5.9.6

y=sinx —Inx

Figure 5.9.7
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Step 7 Choose x; = 2 (since the zero of f(x) is between 1 and n).
Step 2 ['(x) =cosx — 1/x

sinx; — Iln x; sin2 — In 2
Step 3 x; =x; ——————— =2 — ———— ~ 223593
P N cos x; — 1/x, cos2 — 172

Step 4 Repeat Step 3. The values of x,,, f(x,), and f'(x,) are shown in the table,

n Xy S ) )

1 2.000000000 0.216150246 —~0.916146836
2 2.235934064 —0.017827280 —1.0644078%4
3 2.219185522 —0.000082645 —1.054519059
4 2.219107150 —0.000000001 —1.054472505

The answer is
x ~ 2.219107150.
On a calculator we find that

sin (2.219107150) = 0.797104929
In (2.219107150) = 0.797104930.

PROBLEMS FOR SECTION 5.9

Use Newton’s method to find approximate solutions to each of the following equations. (A
hand calculator is recommended.)

1 x345x—-10=0 2 23+ x+4=0

3 X+ xP+x=1 4 2x5 +3x=2

5 xt=x+1, x>0 6 xt=x41, x<0

7 x3—10x +4 =0, x> 1 8 x3—10x +4 =0, D<x<1
9 x4+ Jx=1 10 X+ 1i/x=3

11 et = 1/x 12 e+ x=4

13 X 4 sinx =2 14 cos x = x?, x>0

15 tan x = e, 0<x<n/2 16 e+ nx=0

510 DERIVATIVES AND INCREMENTS

In Section 3.3 we found that the derivative of f is given by the limit

fle +Ax) = f(0)

’ — l
1) A.:—omo Ax
1y . Ay
Ify = f(x), & _ lim )

By definition this means that when the hyperreal number Ax is infinitely close to
but not equal to zero, Ay/Ax is infinitely close to dy/dx.

By contrast, the ¢, d condition for this limit says intuitively that when the
real number Ax is close to but not equal to zero, Ay/Ax is close to dy/dx.
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The ¢, § condition for the derivative can be given a geometric interpretation,
shown in Figure 5.10.1. Consider the curve y = f(x), and suppose f'(c) exists. Draw

S(x)

AN

(¢, f1c))

Figure 5.10.1

the line tangent to the curve at ¢. For Ax # 0, draw the secant line which intersects
the curve at the points (c, f(c)) and (¢ + Ax, f(c + Ax)). Then the tangent line will
have slope f’(c) while the secant line will have slope
Sle+ Ax) —f(d)
Ax ’
The ¢, 6 condition shows that if we take values of Ax closer and closer to zero, then
the slopes of the secant line will get closer and closer to the slope of the tangent line.

EXAMPLE 1 Consider the curve f(x) = x/3.

Then f(x) = 4x723.
At the point x = 8, we have

=8, f(x)=2 f(xy =15 =00833....

B+ AOI—2 1
lim o297 =2 °
Thus Mo Ax 12

This is the slope of the line tangent to the curve at the point (8, 2). As Ax
approaches zero, the slope of the secant line through the two points (8, 2) and
(8 + Ax, (8 + Ax)/?) will approach {;. We make a table showing the slope
of the secant line for various values of Ax.

Ay . Ay 1

) = s _— = l - — =

Ax Ay = (8 + Ax) 2 Ax slope of secant line Ax D
10 0.6207 0.0621 0.0212

1 0.0801 0.0801 . 0.0032

% 0.00829 0.0830 0.0003
—-10 —3.2599 0.3260 0.2427
—1 —0.0871 0.0871 0.0038
—% —0.00837 0.0837 0.0004
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The #,6 condition for the derivative is of theoretical importance but does
not give an error estimate for the limit. When the function f has a continuous second
derivative, we can get a useful error estimate in a different way. 1t is more convenient
to work with one-sided limits,

By an error estimate for a limit

lim g(Ax) =L

Ax—0+

we mean a real function E(Ax), 0 < A x < b, such that the approximation g(Ax)
is always within E(Ax) of the limit L. In symbols,

|g(Ax) — L] < E(AX) for 0<Ax<b.

THEOREM 1

Suppose [ has a continuous second derivative and | f"(t)] < M for all t in the
interval [c, b). Then :

(i) Wheneverc < ¢ + Ax < b,f(c + Ax)iswithinyM Ax2of f(¢) + [7(c
fle + Ax) = (o)

Ax
['(¢). That is, M Ax is an error estimate for the right-sided limit
. 2 . b4

i Jle + Ax) — f{c)
m — I —
Ax—0* AX

(i) Whenever ¢ < ¢+ Ax < b, is within M Ax of

= flo).

There is a similar theorem for the left-sided limit

[ Jle + Ax) — [(x)
im —

Ax—0-~ Ax

= J'c)
with the error estimate $M|Ax].

PROOF Let x = ¢ + Ax. Then
M f"y< M fore <r<x.

Integrating from ¢ to t,

f —-Mdt < f freyde

—M(t — ) = f(t) = f'c) < M(t — ¢).

Integrating again from ¢ to x,

IA
—
<
=

J.x —M(t — ¢ydt < fo’(r) — fleydt < fl M(t — c)dt,

(x - _ o (x =)

~M-f2 < f(ry—f (()11 M 5

.2 .2

or —M% < (f(x) = fle) = f(c)Ax < M%‘,
Ax? . Ax?

—M—rz—é‘/(x) (fley + f'(c Ax)<MT
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This proves part (i) (Figure 5.10.2). Dividing by Ax we get part (ii).

S

c c+ Ax X

Figure 5.10.2

EXAMPLE 1 (Concluded) We consider once more the curve f(x) = x'/* at the point
x = 8. The second derivative is

£ = =35,

First consider the interval [8, 9]. In this interval f“(x) has the maximum value
SO =30 =527 = ke

Thus we may take M = 117, and

LM Ax = s Ax | imate for  lim & =
3 X = 7883 x 1s an error estimate tor Axl_’rr& Ax = 1—2
Ay 1 1
us when Ax s A 1 788 0.0035,
1 Ay 1 1
hen Ax = — — - < —=0. .
when Ax =175 | Ax T 12| = 2880 — 000035
Next consider the interval [7, 8]. This time we take
M = |f"(D = ¥7)~ 37 = 0.0087.
Then IM|Ax| = 0.0044|Ax|
is an error estimate for the limit
. Ay 1
I — =
a0 Ax 12
Ay 1
hen Ax = —1 — — —| £0.004
when Ax , A~ 12 044,
1 Ay 1]
h = —— — — | <0 4.
when Ax o A~ 1 0.0004
From the table in Example 1 we see that the error estimates are slightly

Ay 1
ter than the actual val f .
greater than the actual values o Ax ] 2'
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We shall now turn the problem around. Instead of using the increment Ay
to approximate the derivative dy/dx, we shall use the derivative dy/dx to approximate
the increment Ay. When Ax is small, /(¢ + Ax) will be close to f(c) + f'(c) Ax even
compared to Ax. Part (i) of Theorem 1 gives the error estimate M Ax?* for this
approximation. This method is especially useful for approximating f(x) when there
is a number ¢ close to x such that both f(c¢) and f'(c) are known.

EXAMPLE 2 Find approximate values for Y9 and \¥7.9. Both these numbers arc
close to 8, whose cube root 2 comes out even. Taking f(x) = \3/,\‘ and ¢ = 8§,
we have

fley=2,  fc)=1{3 =00833....
From Theorem 1 the approximate values are
fle + Ax) ~ f(c) + f'(c) Ax.

Thus
J9 ~ 2 + {4 = 20833,
379~ 2 + £5(—0.1) = 1.99167.

To get an error estimate for \3/9 take the interval [8,9]. From Example |
we may take M = 1iz. Therefore by Theorem 1,

Y9 ~ 20833,  error <4.plpe 1% =0.0035,
Thus 2.0798 < Y9 < 2.0868.

To get an error estimate for ﬁ take the interval [7, 8] and M = 0.0087.
By Theorem 1,

J719 ~ 1.991667, error < $(0.0087)(0.1)* = 0.000044.
Thus 1.991623 < /7.9 < 1.991711.

EXAMPLE 3 Find an approximate value for (0.99)°.

Let fx)=x% e=1.
Then fley=15=1, ff(c)=5*=>5.
We put 0.99 = ¢ + Ax, Ax = —0.01.

Then the approximate value is
fle + Ax) ~ fle) + ['(c) Ax,
(0.99)° ~ [ + 5(~0.01) = 0.95.

To get an error estimate we see that f“(u) = 20u®, so |f"(u)| < 20 for u
between 0.99 and 1. Then M = 20, and

0.01)?
(0.99)% ~ 0.95, error < (T) (20) = 0.001,
or 0.949 < (0.99)° < 0.951.

Theorem 1 is closely related to the Increment Theorem in Section 2.2. The
relation between them can be seen when we write them next to each other.
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INCREMENT THEOREM (Repeated)

Hypotheses f’(c) exists and Ax is infinitesimal.

Conclusion  f(c + Ax) = f(c) + f'(c)Ax + s Ax for some infinitesimal ¢ which
depends on c and Ax.

THEOREM 1 OF THIS SECTION (in an equivalent form)

Hypotheses  ["(u) exists and |f"(u)] < M for all u between the real numbers ¢ and
c + Ax.

Conclusion  f(c + Ax) = f(c) + f'(c) Ax + & Ax for some real ¢ within $M|Ax| of 0.

Thus Theorem 1 has more hypotheses but also gives more specific information
about ¢in its conclusion.

PROBLEMS FOR SECTION 5.10

In Problems 1-6, find f'(¢) and an error estimate for the limit

fim fle + Ax) — flo)

fa = Ax—0* Ax
with0 < Ax < 1.
1 fx)=x% c=1 2 f(x)=x3—5x, ¢c=10
3 fx)=2//x c=4 4 f=x/x c=4
5 fx)y=1/x, ¢=3 6 ) =1/x2+1), c=1
7 f(x) =sinx, c=0, O<Ax=<mn)
8 f(x) = tan x, c=0, (0<Ax < n/6)
9 f(x) = cos (2x), c=mn/3, (O<Ax <n)
10 f(x) = sin? (2x), c=mn/2, 0<Ax<m)
11 fx)=1Inx, c=1. O<AxZ1)
12 f(x)=xInx, c=1, 0<Ax=<1)
13 flx) = €%, c=1 (0<Ax<1)
14 flx)=¢". =0, 0<Ax=<1)

In Problems 15-20, find f’(c) and an error estimate for the limit

flc + Ax) — flc)

fl(c):mll—{r(}- Ax
with —1 < Ax < 0.
15 ) =/x ¢=100 16 Jx)=13x +6). c=0
17 f)=x+1, ¢=2 18 fx)=4x3 c=1
19 fy=x/x+1, c=1 20 flx)=x1° ¢=2

In Problems 21-38, approximate the given quantity and give an estimate of error.

21 V65 22 1//50
23 (0.301)* 24 730
25 1/97 26 (99)*2
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27 V102 + Y102 28 (101 + /101)
29 (1.003y° 30 J0.9997

31 sin (g + 0‘004) 32 cos {g + 0.06)
33 tan (0.005) 34 sin (—0.003)
35 eOAOOZ 36 e—0.04

37 In (1.006) 38 In (0.98)

EXTRA PROBLEMS FOR CHAPTER 5

[n Problems 1-10. find the limit.

x? —3x 42 . 2x+ 4
N 2w
3 lim x='3 4 lim (x + 1= o
5 lim o2 6 lim - L
x+23) 3x — 2 .M\/Q; 1
.ox?T x4+ 3 -1
B AV 8 ImtaThe
o qm U 10 fim /XL
X Jx orx— x4+ 1
11 Sketch the curve y = x — I/x.
12 Sketch the curve y = | — x'3,
13 Sketch the curve y = 1/((x — 1){x — 2)).
14 Sketch the curve y? — 4x%2 = 9,
15 Sketch the curve y = |x — 1] + |x + 1].
16 Find the equation of the parabola with directrix y = 1 and focus F(1, —1).
17 Sketch the curve y = —x2 4 2x + 4.
18 Sketch the curve y = (1)x? + x.
19 Find the foci and sketch the ellipse
X2 32
7 + 9= 1.
20 Find the foci and sketch the hyperbola
¥ 2
T 5t
21 Use Translation of Axes to sketch the curve
4x? + 32 — 16x + 2y + 16 = 0.
22 Use Translation of Axes to sketch the curve
—x? 4+ 432 — 6x — 10 = 0.
23 Use Rotation of Axes to transform the equation xy — 9 = 0 into a second degree
equation with no X Y-term. Find the angle of rotation and the new equation.
24 Use Rotation of Axes to transform the equation xy — y? = 5 into a second degree
equation with no X Y-term. Find the angle of rotation and the new equation.
25 In the limit lim,_, 1/\,/; = 1/2, find a & > 0 such that whenever 0 < |x — 4| < §,

|1/y/x — 1/2] < 0.01.
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In the limit lim,., (x> — 1)¥? = o, find a B> 0 such that whenever x > B,
(x? — D2 > 10,000.

Use Newton’s method to find an approximate solution to the equation x + x!% = 3.
Use Newton’s method to find an approximate solution to the equation cosx = In x.
Find an error estimate for the limit

(16 + A —2 1
-_— = ¢ <
A8 Ax 30 O=Axst
Find an error estimate for the limit
. B+A)-3 2
lim —m———— =

= —— ¢ <
Ax—0* Ax 27 O<hxs=l

Find an approximate value for (124)*"* and give an estimate of error.

Find an approximate value for (0.9996)° and give an estimate of error.

Prove that lim_, . f(x) exists if and only if whenever H and K are positive infinite,
f(H) is finite and f(H) = f(K).

Prove that if lim,, , f(r) = L and g(x) is continuous at x = L then lim,_, , g(f(2)) = g(L).
Prove that if lim,_, .. f(z) = = and lim,_,, g(x) = o then lim,_, _ g(f(5)) = =.

Suppose lim, . f(t) = =, ¢ is a positive constant, and cg(t) = f(z) for all ¢. Prove that
lim,, . g(t) = =.

Prove that lim,. . f(x) = L if and only if for every real ¢ > 0 there is a hyperreal § > 0
such that whenever [x — ¢| < §,{f(x) — L| <e.

Let f be the function

1 if x is rational,
/69 = {o if x is irrational.

Using the ¢ 4 condition, prove that f(x) is discontinuous at every real number x = .
Let g be the function

X if x 1s rational,

g(x) ={ e

0 if x is irrational.
Prove that g(x) is continuous at x = 0 but discontinuous everywhere else.
Prove that the function g in the preceding problem is not differentiable at x = 0.

Let

x? if x is rational,
h(x) = L
0 if x is irrational.

Prove that h'(0) exists a-..l equals 0.

Suppose f{(r) is continuous for all t and
lim f()=A, limf()=B.
= - ==

If A < C < B, prove that there is a real number ¢ with f(c) = C.
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APPLICATIONS
OF THE INTEGRAL

INFINITE SUM THEOREM
In Chapter 4 we obtained the formula
b
Area = j f(x)dx
for the area of the region bounded by the x-axis, the curve y = f(x), and the lines
x=aand x = b.

In this chapter we shall obtain integral formulas for several other quantities
arising in geometry and physics, such as volumes, curve lengths, and work. We begin
with the Infinite Sum Theorem, which will be useful in justifying these formulas, It
tells when a given function B(a, b) is equal to the definite integral {? A(x) dx.

Any two infinitesimals are infinitely close to each other. The following
definition helps us to keep track of how close to each other they are.

DEFINITION

Let €, 0 be infinitesimals and let Ax be a nonzero infinitesimal. We say that
¢ is infinitely close to 6 compared to Ax,

eEx 0 (compared to Ax), if ¢&/Ax x~ §/Ax.

In Figure 6.1.1, an infinitesimal microscope within an infinitesimal micro-
scope is used to show ¢ = o {compared to Ax).

For example, 3 Ax 4+ 5Ax? &~ 3Ax — Ax? + AxX® (compared to Ax)
but 3AX + 5AxT x 2 Ax (compared to Ax).

The Infinite Sum Theorem is used when we have a quantity B(w, w) depending on
two variables u < w in [q, b], and the total value B(q, b) is the sum of infinitesimal
pieces
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AB = B(x,x + Ax).

The theorem gives a method of expressing B(a, b) as a definite integral.

0

Figure 6.1.1 ¢ ~ 6 (compared to Ax)

INFINITE SUM THEOREM

Let B(u, w) be a real function of two variables that has the Addition Property
in the interval [a, b]—i.e.,

B(u,w) = B(u,v) + B(v,w)  foru <v <winl[a,b]

Suppose h(x) is a real function continuous on [a, b] and for any infinitesimal
subinterval [x, x + Ax] of [a, b],

AB = h(x) Ax (compared to Ax).
Then B(a, b) is equal to the integral

b
B(a,b) = J. h(x) dx.

Intuitively, the theorem says that if each infinitely small piece AB is infinitely
close to h(x) Ax compared to Ax, then the sum B(a, b) of all these pieces is infinitely
close toY . h(x) Ax (Figure 6.1.2). This is why we call it the Infinite Sum Theorem.

AR
Ax

fi(x)

§ hix)

Figure 6.1.2 a X b
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PROOF Divide the interval [a, b] into subintervals of infinitesimal length Ax. Because
B(u, w) has the Addition Property, the sum of all the AB’s is B(a, b). Now let
¢ be any positive real number. For each infinitesimal subinterval [x, x + Ax]

we have
h(x)Ax ~ AB (compared to Ax)
AB
hix) ~ —
) Ax
hix) — ¢ < @ < h(x)+ ¢
Ax
(h(x) — ¢)Ax < AB < (h(x) + ¢) Ax.
b b
Adding up, Y (h(x) — ¢) Ax < Bla,b) < ) (h(x) + ¢) Ax.

Now take standard parts,
b b
f (h(x) — c)dx < Bla,b) < f (h(x) + o) dx
b ’ ub )
or f h(x)dx — cb — a) < Bla, b) < f W(x)dx + c(b — a).
Since this holds for all positive real ¢, it follows that

b
B(a, b) = f h(x) dx.

We shall use the Infinite Sum Theorem several times in this chapter. As
a first illustration of the method, we derive again the formula from Chapter 4 for
the area of the region between two curves, shown in Figure 6.1.3.

Figure 6.1.3

b
AREA BETWEEN TWO CURVES Area = f [g(x) — f(x)] dx.

where fand g are continyous and f(x) < g(x) fora < x < b,

The justification of a definition resembles the proof of a theorem, but it
shows that an intuitive concept is equivalent to a mathematical one. We shall now
use the Infinitive Sum Theorem to give a justification of the formula for the area
between two curves.
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JUSTIFICATION We write A(a, b) for the intuitive area of the region R between
f(x) and g(x) from a to b. A(u, w) has the Addition Property. Slice R into
vertical strips of infinitesimal width Ax. Each strip is almost a rectangle of
height g(x) — f(x) and width Ax (Figure 6.1.4). The area A4 = A(x, x + Ax)
of the strip is infinitely close to the area of the rectangle compared to Ax,

AA =~ [g(x) — f(x)] Ax (compared to Ax).

The infinite sum theorem now shows that 4A(a, b) is the integral of g(x) — f(x)
from ato b.

Figure 6.1.4

We now use the Infinite Sum Theorem to derive a formula for the volume
of a solid when the area of each cross section is known. Suppose a solid S extends
in the direction of the x-axis from x = a to x = b, and for each x the plane perpen-
dicular to the x-axis cuts the solid in a region of area A(x), as shown in Figure 6.1.5.
The area A(x) is called the cross section of the solid at x. The volume is given by
the formula:

b
VOLUME OF A SOLID V = f A(x) dx.

a

y

Figure 6.1.5

JUSTIFICATION Slice the solid S into vertical slabs of infinitesimal thickness Ax,
as in Figure 6.1.6. Each slab, between x and x + Ax, has a face of area A(x),
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Figure 6.1.6

and thus its volume is given by
AV ~ A(x) Ax (compared to Ax).

(The infinitesimal error arises because the area of the cross section changes
slightly between x and x + Ax.) Then by the Infinite Sum Theorem,

V= J;bA(x) dx.

The pattern used in justifying the two formulas in this section will be repeated
again and again. First find a formula for an infinitesimal piece of volume AV. Then
apply the Infinite Sum Theorem to get an integration formula for the total volume V.

EXAMPLE 1 Find the volume of a pyramid of height /1 whose base has area B, as
in Figure 6.1.7.

Figure 6.1.7 Example 1
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Place the pyramid on its side with the apex at x = 0 and the base at x = h.
We use the fact that at any point x between 0 and A, the cross section has
area proportional to x?, so that

A(x) B
el
Bx?

The volume is then
" Bx? 1 BX*" 1 Br® 1
V = _ d = — « —— = — e = — .
o BT ] 3 3 B
The solution is ¥V = (3)Bh.

EXAMPLE 2 A wedge is cut from a cylindrical tree trunk of radius 3 ft, by cutting
the tree with two planes meeting on a line through the axis of the cylinder.
The wedge is 1 ft thick at its thickest point. Find its volume.

Figure 6.1.8 Example 2

The wedge is shown in Figure 6.1.8. The cross sections perpendicular to
the x-axis are similar triangles. Place the edge along the x-axis with x from
—3 to 3. At the thickest point, where x = 0, the cross section is a triangle
with base 3 ft and altitude 1 ft. The base of the cross section triangle at x is

b=./9 - x?

and the altitude is

b=1/9 —x%

W

The area of the cross section is

A(x) = % - base - altitude = b« §b = £b* = (9 — x?).
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The volume is thus
3

V*JJA(Y)dx—[‘3 l(9—\c2)d = g\'—ixe’ = 6ft3
B e i HU A U R T 2 E

o =

The solution is 6 cubic feet.

PROBLEMS FOR SECTION 6.1

1 The base of a solid is the triangle in the x, y-plane with vertices at (0, 0), (0, 1), and
(1,0). The cross sections perpendicular to the x-axis are squares with one side on the
base. Find the volume of the solid.

2 The base of a solid is the region in the x, y-plane bounded by the parabola y = x?
and the line y = 1. The cross sections perpendicular to the x-axis are squares with
one side on the base. Find the volume of the solid.

3 Find the volume of the solid in Problem 1 if the cross sections are equilateral triangles
with one side on the base.

4 Find the volume of the solid in Problem 2 if the cross sections are equilateral triangles
with one side on the base.

5 Find the volume of the solid in Problem 1 if the cross sections are semicircles with
diameter on the base.

6 Find the volume of the solid in Problem 2 if the cross sections are semicircles with
diameter on the base,

7 Find the volume of a wedge cut from a circular cylinder of radius » by two planes whose
line of intersection passes through the axis of the cylinder, if the wedge has thickness
c at its thickest point.

8 Find the volume of the smaller wedge cut from a circular cylinder of radius r by two
planes whose line of intersection is a chord at distance b from the axis of the cylinder, if
the greatest thickness is ¢.

6.2 VOLUMES OF SOLIDS OF REVOLUTION
Integrals are used in this section to find the volume of a solid of revolution. A solid
of revolution is generated by taking a region in the first quadrant of the plane and

rotating it in space about the x- or y-axis (Figure 6.2.1).

y Y

Figure 6.2.1 Solids of Revolution



6.2 VOLUMES OF SOLIDS OF REVOLUTION

We shall work with the region under a curve and the region between two
curves. We use one method for rotating about the axis of the independent variable and
another for rotating about the axis of the dependent variable.

For areas our starting point was the formula

area = base x height

for the area of a rectangle. For volumes of a solid of revolution our starting point is
the usual formula for the volume of a right circular cylinder (Figure 6.2.2).

Figure 6.2.2

DEFINITION

The volume of a right circular cylinder with height h and base of radius r is
V = nr?h.
DISC METHOD: For rotations about the axis of the independent variable.

Let us first consider the region under a curve. Let R be the region under a
curve y = f(x) from x = a to x = b, shown in Figure 6.2.3(a). x is the independent

(a) (b)
Figure 6.2.3

variable in this case. To keep R in the first quadrant we assume 0 < a < b and
0 < f(x). Rotate R about the x-axis, generating the solid of revolution S shown in
Figure 6.2.3(b).

This volume is given by the formula below.

b
VOLUME BY DISC METHOD V = f 7( f(x))? dx.

a

309
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Figure 6.2.5

6 APPLICATIONS OF THE INTEGRAL

To justify this formula we slice the region R into vertical strips of infinitesimal
width Ax. This slices the solid S into discs of infinitesimal thickness Ax. Each
disc is almost a cylinder of height Ax whose base is a circle of radius f(x)
(Figure 6.2.4). Therefore

AV = n(f(x))* Ax  (compared to Ax).

Then by the Infinite Sum Theorem we get the desired formula

V= f g F(x)? Ax.

a

m

Figure 6.2.4 Disc Method

EXAMPLE 1 Find the volume of a right circular cone with height & and base of radius

r.
It is convenient to center the cone on the x-axis with its vertex at the origin
as shown in Figure 6.2.5. This cone is the solid generated by rotating about
the x-axis the triangular region R under the line y = (r/h)x,0 < x < h,

Since x is the independent variable we use the Disc Method. The volume
formula gives
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2 3R

"ol \? ¥z h r? x 1
V=f n(ﬁx) dx:an xzdxznp?]():gm‘zh,

0 0

or V = inrh,

Now we consider the region R between two curves y = f(x) and y = g(x)
from x = a to x = b. Rotating R about the x-axis generates a solid of revolution §

shown in Figure 6.2.6(c).

¥y y
g(x)
Ry
a R x
()
y y
f(x)
Ry
a b X X
(b)
y
X X
©)
Figure 6.2.6

Let R, be the region under the curve y = f(x) shown in Figure 6.2.6(b), and R,, the
region under the curve y = g(x), shown in Figure 6.2.6(a). Then S can be found by
removing the solid of revolution S, generated by R, from the solid of revolution S,

generated by R,. Therefore
volume of § = volume of §, — volume of S, .
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This justifies the formula

b b
V= f r(g(x)) dx — f (£ ()2 dx.

1

We combine this into a single integral.

b
VOLUME BY DISC METHOD V = J ml(g(x)* — (f(x)*] dx.

Another way to see this formula is to divide the solid into annular discs
(washers) with inner radius f(x) and outer radius g(x), as illustrated in Figure

6.2.7.

Figure 6.2.7

EXAMPLE 2 The region R between the curves y = 2 — x? and y = x? is rotated
about the x-axis generating a solid S. Find the volume of S.

The curves y = 2 — x? and y = x? cross at x = =+ [. The region is sketched
in Figure 6.2.8. The volume is

1 1
V= J (2 — x?)dx — J n(x2)? dx
~1 -1
1
= f (2 — x?)? - zx*dx
-1

1 1
= J- nd — 4x?) dx = n(dx — %.\‘3):| = 16m/3.
-1

-1
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y y

>

[N I

Py
QTS B S
hY

y=2—x2

Figure 6.2.8

Warning : When using the disc method for a region between two curves, the
correct formula is

b b
V=fnmmwx—fﬂﬂmﬂm

b
or V= [ allg)? — (f
A common mistake is to subtract f(x) from g(x) before squaring.
b
Wrong: V = f a(g(x) — f(x)? dx.

Wrong : (for Example 2):

i

1
V= f (2 — x*) = x*)P dx = f (2 — 2x%)% dx
. .

1
= f n(d — 8x* + 4x*) dx = 64x/15.
~1

CYLINDRICAL SHELL METHOD: For rotations about the axis of the dependent

variable.

Let us again consider the region R under a curve y = f(x) from x = a to
x = b, so that x is still the independent variable. This time rotate R about the y-axis
to generate a solid of revolution S (Figure 6.2.9).

b
VOLUME BY CYLINDRICAL SHELL METHOD V:J~ 2zxf(x) dx.
a

Let us justify this formula. Divide R into vertical strips of infinitesimal width
Ax as shown in Figure 6.2.10. When a vertical strip is rotated about the y-axis
it generates a cylindrical shell of thickness Ax and volume AV. This cylindrical
shell is the difference between an outer cylinder of radius x + Ax and an
inner cylinder of radius Ax. Both cylinders have height infinitely close to f(x).
Thus compared to Ax,
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y y

Figure 6.2.9

JE S

Figure 6.2.10 Cylindrical Shell Method

AV = outer cylinder — inner cylinder

a(x + Ax)*(x) — nx*f(x)

a(x? 4+ 2x Ax + (Ax)? — xH) [ (x)
7(2x Ax + (Ax)D) f(x) = n2x Axf(x),
whence AV ~ 2axf(x) Ax (compared to Ax).

14

By the Infinite Sum Theorem,

b
V= j 2nxf(x) dx.

EXAMPLE 3 The region R between the line y = 0 and the curve y = 2x — x? is
rotated about the y-axis to form a solid of revolution S. Find the volume of S.
We use the cylindrical shell method because y is the dependent variable.
We see that the curve crosses the x-axis at x = 0 and x = 2, and sketch the
region in Figure 6.2.11. The volume is

2

2 2
V= J 2rx(2x — x?)dx = 27IJ 2% — xPdx = 2r(3x? — %x"’)] = 4.
0 0

0
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6.2 VOLUMES OF SOLIDS OF REVOLUTION

Figure 6.2.11

Now let R be the region between the curves y = f(x) and y = g(x) for
@ < x < b, and generate the solid S by rotating R about the y-axis. The volume of §
can be found by subtracting the volume of the solid S, generated by the region under
y = f(x) from the volume of the solid S, generated by the region under y = g(x)
(Figure 6.2.12). The formula for the volume is

b b
Vv=S§,—-8, = J 2mxg(x) dx — f 2nxf (x) dx.

Combining into one integral, we get

b
VOLUME BY CYLINDRICAL SHELL METHOD V=j 2mx(g(x) — f(x)) dx.

y
gx)
2
v 00
a b X
(a)
y
flx)
R
a bﬁ x
(b)

Figure 6.2.12

315
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y y
glx)
R
: S0
a b x
©
Y
a b x
(d)
Figure 6.2.12

EXAMPLE 4 The region between the curves y = xand y = \/; is rotated about the
y-axis. Find the volume of the solid of revolution.

We make a sketch in Figure 6.2.13 and find that the curves cross at x = 0 and
x = 1. We take x for the independent variable and use the Cylindrical Shell
Method.

1 i .
V= f 27tx(ﬁ — x)dx = f 2n(x3? — x¥ydx = 2n(%x? — éxz')J = 7.
0 0

0

Some regions R are more easily described by taking y as the independent
variable, so that R is the region between x = f(y) and x = g(y) for ¢ £ y < 4. The
volumes of the solids of revolution are then computed by integrating with respect to
y. Often we have a choice of either x or y as the independent variable.

Figure 6.2.13
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How can one decide whether to use the Disc or Cylindrical Shell Method?
The answer depends on both the axis of rotation and the choice of independent
variable. Use the Disc Method when rotating about the axis of the independent variable.
Use the Cylindrical Shell Method when rotating about the axis of the dependent
variable.

EXAMPLE 5 Derive the formula V = $m? for the volume of a sphere by both the
Disc Method and the Cylindrical Shell Method.
The circle of radius r and center at the origin has the equation

x? + y* =12

The region R inside this circle in the first quadrant will generate a hemisphere
of radius r when it is rotated about the x-axis (Figure 6.2.14).

Figure 6.2.14

First take x as the independent variable and use the Disc Method. R is the
region under the curve

y=./r"—x° 0<x=<r
The hemisphere has volume

3 = [ atreor ax

0

r
= f n(r? — x¥dx = mix — %nx{|

0

r

(4]
=’ — {ur® = nrd
Therefore the sphere has volume
V = 47,

Now take y as the independent variable and use the Cylindrical Shell Method.
R is the region under the curve

x=./rr—y%, 0<y<r

The hemisphere has volume

ly = J. 2ny/r? — y* dy.
0
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Putting u = r? — y?, du = —2ydy, we get

0 0 0
1y = J 271\/;(-—%) du = J —n\/; du = —%mﬁ"z] = 2mr?,
r2 r2

Thus again V = $mr,

PROBLEMS FOR SECTION 6.2

In Problems 1-10 the region under the given curve is rotated about (a) the x-axis, (b) the y-axis.
Sketch the region and find the volumes of the two solids of revolution.

1

o N i W

y=x% 0<x<1 2
y=\/}, 0=x=4 4
y=1—-x, 0<x=<1 6
y=Jl+x* 0<x<1 8
y=x73 1<x<2 10

y=x3 0<x<1

y=./2x—-4, 2=<x<4
y=x, 1 <x<2
y=\/x2——:1, 2<x<4
y=1/x 1=<x<2

In Problems 11-22 the region bounded by the given curves is rotated about (a) the x-axis, (b) the
y-axis. Sketch the region and find the volumes of the two solids of revolution.

11
13
15
17
19
20
21
22

=20 y=x2/1-x* 12

y=x, py=2x, 0=<x=3 14
y=x3 yp=x? 16
x=0 x=y—* 18
x=0, x=yp+1fy, 1 <y=<?2
x=0, y=20, 2x2+y* =4

y=0 y=x-2 y=x

y=2x y=1-x y=x-—1/x

y=0, y:x-xz
y:xz, y=Xx
y=3/x, y=4-—x

X=p x= 2}' _ J,Z

{first quadrant)

In Problems 23-34 the region under the given curve is rotated about the x-axis. Find the volume
of the solid of revolution.

23
24
25
26
27
29

31

33

y=./sinx, 0<x<n
J)=cosx\/m, 0<x<nn2
y=cosx —sinx, 0<x< /4
y=sin(x/2) + cos(x/2), 0<x<n
y=e, 0x<1 28
y=xev, 0<x<1 30
I=x=<2 32

y=14/x,

)7:\/x~1, 1 <x<4 34
x

y=el " 0<x<2
y= e +1, 0<x<3

1
y=———— 0<x=1
\/2X+1

o /H2x
)_\/x—%— r

0<x<=1

In Problems 35-46 the region is rotated about the x-axis. Find the volume of the solid of revolution.

35

37
39
41

y= X on<x<a 36
X

y=sin(x?), 0<x<./n 38

y=e" 0<x<1 40

y=1l/xe*, 1<x<4 42

y= cosx, /6 < x < nf2

X
y=cos(x2'), OS,\‘S\/n/.2
y=ex, 1Sx<2

y=xe, 1<x<2
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43 =x? <x=< = <=x =<
y=x"% 1<x<2 44 yx2+1,0x2

45 ~ 1<x<2 46 X o<
b o y=g l=xs

47 A hole of radius a is bored through the center of a sphere of radius r (a < r). Find the
volume of the remaining part of the sphere.

48 A sphere of radius r is cut by a horizontal plane at a distance ¢ above the center of the
sphere. Find the volume of the part of the sphere above the plane (¢ < r).

49 A hole of radius a is bored along the axis of a cone of height h and base of radius r.
Find the remaining volume (a < r).

50 Find the volume of the solid generated by rotating an ellipse «?x? + b%y? = 1 about
the x-axis. Hint: The portion of the ellipse in the first quadrant will generate half the
volume.

51 The sector of a circle shown in the figure is rotated about (a) the x-axis, (b) the y-axis.
Find the volumes of the solids of revolution.

y ¥y
(a, b)
r A
=1+
r X i : pd X
(a) (b)

52 The region bounded by the curves y = x2, y = x is rotated about (a) the line y = —1,
(b) the'line x = —2. Find the volumes of the solids of revolution.

53 Find the volume of the torus (donut) generated by rotating the circle of radius » with
center at (c, 0) around the y-axis (r < ¢).

54 (a) Find a general formula for the volume of the solid of revolution generated by rotating

the region bounded by the curves y = f(x),y = g(x),a < x < b, about the line
y= —k.
(b) Do the same for a rotation about the line x = —h.

LENGTH OF A CURVE

A segment of a curve in the plane (Figure 6.3.1) is described by

y = f(x), a<x=bh

What is its length? As usual, we shall give a definition and then justify it. A curve
y = f(x) is said to be smooth if its derivative f'(x) is continuous. Our definition will
assign a length to a segment of a smooth curve.

Figure 6.3.1

y

1
II
|
I8

SNy S
x

o
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DEFINITION

Assume the function y = f(x) has a continuous derivative for x in [a, b), that is,
the curve

y = f(x), a<x=<bh

is smooth. The length of the curve is defined as

b
= f ST+ (dy/dx)? dx.

Because /1 + (dy/dx)? dx = /dx® + dy?, the equation is sometimes
b S —
written in the form 5= j ﬁxl -+ dy?

with the understanding that x is the independent variable. The length s is always
greater than or equal to O because a < b and

ST+ (dy/dx)? > 0.

JUSTIFICATION Let s(u, w) be the intuitive length of the curve between t = u and
t = w. The function s(u, w) has the Addition Property; the length of the
curve from u to w equals the length from u to v plus the length from ¢ to w.
Figure 6.3.2 shows an infinitesimal piece of the curve from x to x + Ax. Iis
length is As = s{x, x + Ax).

Figure 6.3.2

The slope dy/dx is a continuous function of x, and therefore changes only by
an infinitesimal amount between x and x + Ax. Thus the infinitesimal piece
of the curve is almost a straight line, the hypotenuse of a right triangle with
sides Ax and Ay. Hence

As > JAX? + Ay? (compared to Ax).
Dividing by Ax,

ENMK-Z_\[A.\‘ 2+ ATZ~\FF"'Z
Ax Ax TV lAX Ax] dx|
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Then As = /1 + (dy/dx)* Ax  (compared to Ax).

Using the Infinite Sum Theorem,

s(a, by = fb 1+ (dy/dx)* dx.

EXAMPLE 1 Find the length of the curve
y=2x% 0<x<l1

shown in Figure 6.3.3. We have

1
dyfdx = 3x'?, 5= J 1+ 9xdx.
0

Putu =1 + 9x. Then

10 10
o= | sﬁdu=%-éuﬂ — A(/1000 — 1)
1

1

-
|
[
=

—_—m T

Figure 6.3.3

Sometimes a curve in the (x, y) plane is given by parametric equations
x=f@), y=gt), c<t=d

A natural example is the path of a moving particle where ¢ is time. We give a formula
for the length of such a curve.

DEFINITION

Suppose the functions
x=f@, y=g@

have continuous derivatives and the parametric curve does not retrace its path
for t in [a, b]. The length of the curve is defined by

s = f (dx/dt)* + (dy/dr)* dt.

JUSTIFICATION The infinitesimal piece of the curve (Figure 6.3.4) from ¢t to t + At
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X
Figure 6.3.4

Is almost a straight line, so its length As is given by

As x~ JAx® + Ay*  (compared to Ar),

As x \/(dx/dt)® + (dy/dt)* At (compared to At).

By the Infinite Sum Theorem,

s = J Jdxjdn? + (dy/dn? dr.

The general formula for the length of a parametric curve reduces to our first
formula when the curve is given by a simple equation x = g(y) or y = f{(x).
Ify=/f(x),a <x =<b, wetake x = r and get

h
5= f 1+ (dy/dx)* dx.

Ifx =g(y),a<y<bh wetake y = r and get

b
s= f Jdxjdy)? + 1dy.

EXAMPLE 2 Find the length of the path of a ball whose motion is given by
x = 20r, y = 32t — 1612

from t = 0 until the ball hits the ground. (Ground level is y = 0, see Figure
6.3.5) The ball is at ground level when

32r — 1602 = 0, t=0 and =2
We have dx/dt = 20, dy/dt = 32 — 32r,

2
§ = f J20% + (32 — 320)% dt.
0

We cannot evaluate this integral yet, so the answer 1s left in the above form.

We can get an approximate answer by the Trapezoidal Rule. When Ax = £,
the Trapezoidal Approximation is

s~ 535 error < 0.4.
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Figure 6.3.5

The following example shows what happens when a parametric curve does
retrace its path.

EXAMPLE 3 Let
x=1-1% y=1, 1< <1,

As t goes from —1 to 1, the point (x, y)-moves from (0, 1) to (1, 1) and then
back along the same line to (0, 1) again. The path is shown in Figure 6.3.6.

Figure 6.3.6

The path has length one. However, the point goes along the path twice for a
total distance of two. The length formula gives the total distance the point
moves.

s — j AT+ e d = f B e e
-1 -1
=f1 ./4t2dt=jl et dt = 2.
-1 —1

We next prove a theorem which shows the connection between the length of
an arc and the area of a sector of a circle. Given two points P and Q on a circle with
center O, the arc PQ is the portion of the circle traced out by a point moving from P
to Q in a counterclockwise direction. The sector POQ is the region bounded by the
arc PQ and the radii OP and OQ as shown in Figure 6.3.7.
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Figure 6.3.7

THEOREM

Let P and Q be two points on a circle with center O. The area A of the sector
POQ is equal to one half the radius r times the length s of the arc PQ,

A = drs.
DISCUSS/ION The theorem is intuitively plausible because if we consider an

infinitely small arc As of the circle as in Figure 6.3.8, then the corresponding
sector is almost a triangle of height r and base As, so it has area

AA ~ 4r As (compared to As).

Summing up, we expect that A = 3rs.

Figure 6.3.8

We can derive the formula C = 2z for the circumference of a circle using the
theorem. By definition, x is the area of a circle of radius one,

1
n:f 2./1 — y¥dy.
-1
Then a circle of radius r has area
¥ ~l
A= f 2/t = yrdy = J 2,2 /1 — (y/r)? d(y/r) = nr?.
~r -1

Therefore the circumference C is given by
A =3rC, nr? = 4LC, C = 2nr.
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PROOF OF THEOREM To simplify notation assume that the center O is at the
origin, P is the point (0, r) on the x-axis, and Q is a point (x, y) which varies
along the circle (Figure 6.3.9). We may take y as the independent variable and

R(0. )1 Qlx, y)
¥ 5
A
o ¢ P(E). F)
Figure 6.3.9

use the equation x = ,/r? — y?* for the right half of the circle. Then 4 and s
depend on y. Our plan is to show that

d4 1 ds
dy =7 dy’
First, we find dx/dy:
dx_ -y _ ¥
dy N r2 —_ yZ - x

Using the definition of arc length,

ds / dx\? \/ y? \/xz + 3y
dy * (dy) + x?2 x? X

The triangle OQR in the figure has area 1xy, so the sector has area

¥ 1
A= J- xdy-ixy.

0

1

2

2 .

Thus d—Azl ds _ 1 d—Azlrﬁ.
2 dy 2 dy

So A and Jrs differ and only by a constant. But when y = 0, 4 = 1rs = 0.
Therefore A = rs.

To prove the formula A = s for arcs which are not within a single quadrant
we simply cut the arc into four pieces each of which ‘is within a single
quadrant.
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PROBLEMS FOR SECTION 6.3

Find the lengths of the following curves.

1
3
5

6

8
10
11
12

13
14
15
16

17

18

19

20

21

22

23

24
25

p=3x+2¥ 0<x<3 2 sy =(x2 432 —2<x<5
By —1Pp=x3 0<x<2 4 y= (@5, 0< x <1
y=(x—D¥ 1<x<9 Hin: Solve for x as a function of y.

x* yt 43
= 4 —, 1 £x<3 7 X =" <p<6
y 12 + X g * 6y 3=y
y:%x\['—\/z, 1 <x <100 9 p=233 3yt 1< <8

Bx=2"+y7?% 1<y<2

X2 + 33 =1, first quadrant
y=F/r+ 2rd, 0<x <10

y = 2|]t \//tz—-l-—itir, 2<x<6
y=* /" +172d;, 1<x<3
X = \/\ﬂTl dr, 1
y

J‘l <y<4
[T/t + 1)72d, 0<x <1

Find the distance travelled from ¢t = 0 to ¢ = 1 by an object whose motion is x = %2,

y=0- "

Find the distance moved from t = 0 to t = 1 by a particle whose motion is given by

x =41 — 0¥y =237

Find the distance travelled from ¢ = | to r = 4 by an object whose motion is given by
— +3/2 —

x =t y=09r

Find the distance travelled from time t = O to t = 3 by a particle whose motion is given

by the parametric equations x = 5¢2, y = £,

Find the distance moved from t = 0 to ¢ = 2x by an object whose motion is x = cos ¢,

y=sint.

Find the distance moved from ¢ = 0 to t = 7 by an object with motion x = 3 cos 21,

y = 3sin 2t

Find the distance moved from t = 0 to t = 2z by an object with motion x = cos®1,

y = sin®t.

Find the distance moved by an object with motion x = ¢'cost, y = e'sin, 0 < ¢t < 1.

Let A(t) and L(f) be the area under the curve y = x? from x = 0 to x = t, and the length
of the curve from x = 0 to x = ¢, respectively. Find d(A(r))/d(L(t)).

In Problems 26-30, find definite integrals for the lengths of the curves, but do not evaluate the

integrals.

26
27
28
29
30

31

32

33

y=x3 0<x<1

y=2x2—-x4+1, 0<x<4

x=1/ y=1 1<1<5

x=2+1, y=/1, 1<r<2

The circumference of the ellipse x* + 4y* = 1.

Set up an integral for the length of the curve y = \ﬂ, 1 < x £ 2, and find the Trapezoi-
dal Approximation where Ax = .

Set up an integral for the length of the curve x = 12 — r, y = 2,0 < ¢ < 1, and find
the Trapezoidal Approximation where At = %.

Set up an integral for the length of the curve y = 1/x, 1 < x < 5,andfind the Trapezoidal
Approximation where Ax = [.
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34 Set up an integral for the length of the curve y = x2, — 1 < x < 1, and find the Trapezoi-
dal Approximation where Ax = 3.

35 Suppose the same curve is given in two ways, by a simple equation y = F(x),a < x < b
and by parametric equations x = f(t), y = g(t), ¢ < t < d. Assuming all derivatives are
continuous and the parametric curve does not retrace its path, prove that the two
formulas for curve length give the same values. Hinr: Use integration by change of
variables.

AREA OF A SURFACE OF REVOLUTION

When a curve in the plane is rotated about the x- or y-axis it forms a surface of revolu-
tion, as in Figure 6.4.1.

Figure 6.4.1 Surfaces of Revolution

The simplest surfaces of revolution are the right circular cylinders and cones.
We can find their areas without calculus,

Figure 6.4.2 shows a right circular cylinder with height s and base of radius
r. When the lateral surface is slit vertically and opened up it forms a rectangle with
height h and base 2zr. Therefore its area is

lateral area of cylinder = 2nhr.

Figure 6.4.3 shows a right circular cone with slant height / and base of radius r.

When the cone is slit vertically and opened up, it forms a circular sector with
radius [ and arc length s = 2rr. Using the formula A = 1 sl for the area of a secior, we
see that the lateral surface of the cone has area

lateral area of cone = nrl.

27r

Figure 6.4.2 Figure 6.4.3



328 6 APPLICATIONS OF THE INTEGRAL

Figure 6.4.4 Cone frustum

Figure 6.4.4 shows the frustum of a cone with smaller radius r, larger radius
ry, and slant height I. The formula for the area of the lateral surface of a frustum of a
cone is

lateral area of frustum = n(ry + r,)l.

This formula is justified as follows. The frustum is formed by removing
a cone of radius r; and slant height /; from a cone of radius r, and slant height /,.
The frustum therefore has lateral area

A =mry)ly, —ard,.

The slant heights are proportional to the radii,

.\
—~—

2
— ==, so 1y, =1,

The slant height  of the frustum is
I=1,—1.
Using the last two equations,

ey + ) =nlr, + 1), — 1)
alryly, + vy — ryly — ridy)

= nr,l, — wryly = A.

A surface of revolution can be sliced into frustums in the same way that a
solid of revolution can be sliced into discs or cylindrical shells. Consider a smooth
curve segment

v = f(x), a<x<bh

in the first quadrant. When this curve segment is rotated about the y-axis it forms a
surface of revolution (Figure 6.4.5).
Here is the formula for the area.

AREA OF SURFACE OF REVOLUTION
b
A= J 2nx /1 + (dyfdx)? dx (rotating about y-axis).

To justify this formula we begin by dividing the interval [a, b] into infinitesi-
mal subintervals of length Ax. This divides the curve into pieces of infinitesi-
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[N S —

o —
>
=

Figure 6.4.5

mal length As. When a piece As of the curve is rotated about the x-axis it
sweeps out a piece of the surface, A4 (Figure 6.4.6). Since As is almost a line
segment, AA is almost a cone frustum of slant height As, and bases of radius
x and x + Ax. Thus compared to Ax,

As =~ /1 + (dy/dx)* Ax,
AA = a(x + (x + Ax)) As = 2nx As,
AA =~ 2nx. /1 + (dy/dx)* Ax.

Then by the Infinite Sum Theorem,

b
A= f 2 /1 + (dy/dx)? dx.

As

- leax * x

Figure 6.4.6

EXAMPLE 1 The line segment y = 3x, from x = 1 to x = 4, is rotated about the
y-axis (Figure 6.4.7). Find the area of the surface of revolution.

FIRST SOLUTION We use the integration formula. dy/dx = 3, so

4
Azf 2ux/1 + (dy/dx)? dx
1
4 4
=f 2nx\/1+32dx=2n,/10f x dx
1 1
x| (16 — 1 -
=27r\/f0%:| =2n\ﬁo( 5 )=1snﬁo.
1
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y=3x

Figure 6.4.7

SECOND SOLUTION This surface of revolution is a frustum of a cone, so the
formula for the lateral area of a frustum can be used directly. From the
diagram we see that the radii and slant height are:

ro=1, r, =4,
[ = distance from (1, 3) to (4, 12)

= JE -1 Fa2-372 =319 = /90 =3/10.

Then A = alr; + r))l = n(1 + 4)3,/10 = 15z./10.

EXAMPLE 2 The curve y = $x% 0 < x < 1, is rotated about the y-axis (Figure
6.4.8). Find the area of the surface of revolution.
dy

3

dx

1
A =f 2nx./1 + (dy/dx)? dx
0

i :
= f 2nx /1 + x*dx = | n/udu (where u = 1 + x?)
4] i

2 .
§7IL43"2J = %n(Z\/z - 1.

1

y=2x?

Figure 6.4.8
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In finding a formula for surface area, why did we divide the surface into
frustums of cones instead of into cylinders (as we did for volumes)? The reason is that
to use the Infinite Sum Theorem we need something which is infinitely close to a small
piece AA of area compared to Ax. The small frustum has area

(2x + Ax)m As

which is infinitely close to A4 compared to Ax because it almost has the same shape
as AA (Figure 6.4.9). The small cylinder has area 2xn Ay. While this area is infi-
nitesimal, it is not infinitely close to A4 compared to Ax, because on dividing by Ax
we get

W:ang-kné.xﬁtbmé
Ax Ax Ax dx’
M = 2xnﬂ x 2X7le-
Ax Ax dx

As
e e
Ay
T 3
e Ax
frustum cylinder
Figure 6.4.9

Approximating the surface by small cylinders would give us the different and incorrect

b d
value j 2mx d—y dx for the surface area.
a x

When a curve is given by parametric equations we get a formula for surface
area of revolution analogous to the formula for lengths of parametric curves in Section
6.3.

Let - ox=f@), y=gO a<t=<b

be a parametric curve in the first quadrant such that the derivatives are continuous
and the curve does not retrace its path (Figure 6.4.10).

t=»5

As

Figure 6.4.10

331
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AREA OF SURFACE OF REVOLUTION

b IS 2 d 2
A= J; 271.\'\/(7%%) + (d%‘)) dt (rotating about y-axis).

To justify this new formula we observe that an infinitesimal piece of the
surface is almost a cone frustum of radii x, x + Ax and slant height As,
Thus compared to At,

As x /(dx/dr)? + (dy/dn)? At
AA x w(x + (x + AX)) As = 2nx As,
AA = 2mx./(dxjdt)? + (dy/dt)? At

The Infinite Sum Theorem gives the desired formula for area.

This new formula reduces to our first formula when the curve has the simple
formy = f(x). If y = f(x), a < x < b, take x = r and get

b
A= j 2nx. /1 + (dy/dx)* dx (about y-axis).

a

Similarly, if x = g(y), a < y < b, we take y = 1 and get the formula

b
A= f 2ax./(dx/dy)? + Ldy (about y-axis).

EXAMPLE 3 The curve x = 2t%, y =13, 0 <1< 1 is rotated about the y-axis.
Find the area of the surface of revolution (Figure 6.4.11).

We first find dx/dt and dy/dt and then apply the formula for area.

dx dy
—_— = 4 —_ =
a =

1 -
A= f 2nx/(dx/dt)? + (dy/dt)? dt

0

1 -
- f 4ne® J(40)* + (3¢2)* dr
0

1
= 47rf 2. /1662 + 9t dr
[}
1
= 4nJ- /16 + 91 dt.
0

32,

~
I
ra—

Figure 6.4.11
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Let u = 16 + 9t du = 18t ds, dtzl—;;—tdu, 2= 16. Then u = 16 at
t=0andu=25att=1,s0
23 1 251 fu—16
A=4 3 /u—du=4 —
nfm \/;ISI u nJ;G 18( 5 )\/;du
2 (25 3 5692
= 7 _16 du = —mn ~ 4.7n.
81L6 (u Vi du = T~ 4T

EXAMPLE 4 Derive the formula A = 4mr? for the area of the surface of a sphere of
radius r.

When the portion of the circle x* + y? = r? in the first quadrant is rotated
about the y-axis it will form a hemisphere of radius r (Figure 6.4.12). The
surface of the sphere has twice the area of this hemisphere.

y y

x2+y2___r2

Figure 6.4.12

It is simpler to take y as the independent variable, so the curve has the
equation
x=/rt—y* 0<y<r

Then —d—)—c = 4

dy - [¥2 — y2'
This derivative is undefined at y = 0. To get around this difficulty we let
0 < a < r and divide the surface into the two parts shown in Figure 6.4.13,
the surface B generated by the curve from y = 0 to y = g and the surface C
generated by the curve fromy =atoy =r.

The area of C is

C= J- 2nx. /(dx/dy)*> + 1dy
= J 2n /12 — 2 /1 + y* [0 — y¥) dy
= f 2n /1 = y2 /P — yD) dy

= f 2nrdy = 27zry:| = 2ar(r — a).

a

a

We could find the area of B by taking x as the independent variable. However,

333
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J Y

Figure 6.4.13

it is simpler to let ¢ be an infinitesimal & Then B is an infinitely thin ring-
shaped surface, so its area is infinitesimal. Therefore the hemisphere has area

IA=B+ Cx0+2m(r — &) ~ 2nr?,
$0 14 = 2nr?,

and the sphere has area A = 4nr2,

If a curve is rotated about the x-axis instead of the y-axis (Figure 6.4.14), we
interchange x and y in the formulas for surface area,

b .
A= f 2my/(dx/de)* + (dy/dn*d:  (about x-axis),

b
A= f 2ry/(dx/dy)* + Ldy (about x-axis),
b
A= J 2ny /1 + (dy/dx)? dx (about x-axis).
Y y

/

o -
S~ —-
=

Figure 6.4.14

Most of the time the formula for surface area will give an integral which
cannot be evaluated exactly but can only be approximated, for example by the
Trapezoidal Rule.

EXAMPLE 5 Let C be the curve
y = x* 0<x<1.  (seeFigure 6.4.15)

Set up an integral for the surface area generated by rotating the curve C about
(a) the y-axis, (b) the x-axis (see Figure 6.4.106).
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y

(a) (b)
Figure 6.4.15 Figure 6.4.16

(a) dyldx = 4x>

1
A= f 2nx/1 + (dy/dx)* dx
0

1
= f 2nx. /1 + 16x® dx.
0

We cannot evaluate this integral, so we leave it in the above form. The
Trapezoidal Rule can be used to get approximate values. When Ax = {5 the
Trapezoidal Approximation is

A ~ 642, error < 0.26.

1
(b) A= f 2y /1 + (dy/dx)* dx
1]

1
= j 2nx* /1 + 16x5 dx.

0

The Trapezoidal Approximation when Ax = g is

A ~ 3.582 error < 0.9.

PROBLEMS FOR SECTION 6.4

In Problems 1-12, find the area of the surface generated by rotating the given curve about the
y-axis.

1 y=x% 0<x<2 2 y=cx+d, a<x<b

3 y=2x*? 0<x<1 4 y=1x2+2 1 <x<2
5 y=4x/x—x 1sx<4

6 y=hbt4+ix7% 1<x<2

7 y=3x3 —3x13, 1<x<8

8 x=2+1,y=4—1 0=<1=<4

9 x=t+1,y= 4+t 052

10 x=ty=4% 0<r<3
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11 x=3y=3t4+1 0<:<|
12 x4 23 — 1 first quadrant

In Problems 13-20, find the area of the surface generated by rotating the given curve about the x-
axis.

13 y=1ix3 0<x<1
14 y=x 1<x<2
x3 1
16 y=axt i 1<x<2
17 y=ix/x -y, 3<x<4
18 ypo=3x33 _ 313 8 < x <27
19 x=2t+1lL,y=4—-1 0=51<4
20 x=L+6y=2+1 0<1<1
21 The part of the circle x? 4+ y? = r? between x = 0 and x = a in the first quadrant is

rotated about the x-axis. Find the area of the resulting zone of the sphere (0 < a < #).
22 Solve the above problem when the rotation is about the y-axis.

In Problems 23-26 set up integrals for the areas generated by rotating the given curve about
(a) the y-axis, (b) the x-axis.

23 y=x% 0<x<1

24 .\‘=y+\,@, 2<y<3

25 x=LP4+y=0-1, 1<:<10

26 x=ty=1p, 2<1<4

27 Set up an integral for the area generated by rotating the curve y = $x2,0 < x < [ about

the x-axis and find the Trapezoidal Approximation with Ax = 0.2.

28 Set up an integral for the area generated by rotating the curve y = 4x*, 0 < x < 1
about the y-axis and find the Trapezoidal Approximation with Ax = 0.2.

29 Show that the surface area of the torus generated by rotating the circle of radius r and
center (¢,0) about the y-axis (r < ¢) is 4 = 4n’rc. Hint: Take y as the independent

variable and use the formula [* r dy/,/r*> — y? for the length of the arc of the circle from
y=atoy=bhb

AVERAGES

Given n numbers y,, ..., y,, their average value is defined as

ot ty,
7 '

Yave =

If all the y; are replaced by the average value y,.., the sum will be unchanged,

yy+ -+ Yu = Yave + o+ Yave = MYaye-

If /'is a continuous function on a closed interval [a, b], what is meant by the
average value of /" between « and b (Figure 6.5.1)? Let us try to imitate the procedure
for finding the average of n numbers. Take an infinite hyperreal number H and
divide the interval [g, b] into infinitesimal subintervals of length dx = (b — a)/H. Let
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fave

Figure 6.5.1 a h

us “sample” the value of f at the H points a,a + dx,a + 2dx,...,a + (H — 1)dx.
Then the average value of f should be infinitely close to the sum of the values of f
ata,a + dx,...,a + (H — 1) dx, divided by H. Thus

f@+ fla+dx)+ fla+2dx)+ -+ fla+ (H — 1)dx)

f;vez H
. b—a 1 dx
Since dx = i ,ﬁ—b_aandwehave
f ~f(a)dx+f(a+dx)dx+---+f(a+(H—l)dx)dx
ave ™ b_a . s
b
o fx)dx
f;vez%—_'
—a

Taking standard parts, we are led to

DEFINITION

Let f be continuous on [a, b]. The average value of f between a and b is

fa f(x)dx

Joe =Ty

Geometrically, the area under the curve y = f(x) is equal to the area under
the constant curve y = f, . between a and b,

ﬁww—m=jﬂnm

eXaMPLE 1 Find the average value of y = ﬁ from x = 1 to x = 4 (Figure 6.5.2).

Cfixdx 3P -1 14
Yave = (4__1) - 3 3 9

y

y=vx
Yave /
-

Figure 6.5.2 1

337
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Recall that in Section 3.8, we defined the average slope of a function F
between a and b as the quotient

F(b) — Fl(a)

average slope =
b—a

Using the Fundamental Theorem of Calculus we can find the connection between
the average value of F’ and the average slope of F.

THEOREM 1

Let F be an antiderivative of a continuous function f on an open interval I.
Then for any a < b in I, the average slope of F between a and b is equal to
the average value of f between a and b,

F(b) — Fla) _ |2 f(x)dx

b—ua b—a

PROOF By the Fundamental Theorem,

b
F(b) — F(a) = f f(x)dx.

THEOREM 2 (Mean Value Theorem for Integrals)

Let f be continuous on [a, b). Then there is a point ¢ strictly between a and b
where the value of [ is equal to its average value,

P f(x)dx

fley ===

PROOF Theorem 2 is illustrated in Figure 6.5.3. We can make f continuous on the
whole real line by defining f(x) = f(a) for x < a and f(x) = f(b) for x > b.
By the Second Fundamental Theorem of Calculus, f has an antiderivative F,
By the Mean Value Theorem there is a point c¢ strictly between « and b at
which F'(c) is equal to the average slope of F,

o Fb) — Fla)
Fa= b—a
But F'(¢) = f(c) and F(b) — F(a) = [% f(x) dx, so
b
i = /W
—a
f(x)

Save fo 7 N
S

\ 1

1
I
|
E
|

—&

Figure 6.5.3 a c
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EXAMPLE 2 A car starts at rest and moves with velocity v = 3t%. Find its average
velocity between times t = 0 and ¢ = 5. At what point of time is its velocity
equal to the average velocity?

LRk _us_
ave 5-0 5 5 '

To find the value of t where v = v,,., we put

32 =25, t=./253=5//3.

Suppose a car drives from city A to city B and back, a distance of 120 miles
each way. From 4 to B it travels at a speed of 30 mph, and on the return trip it travels

at 60 mph. What is the average speed?
If we choose distance as the independent variable we get one answer, and if we

choose time we get another.
Average speed with respect to time: The car takes 120/30 = 4 hours to go
from A to B and 120/60 = 2 hours to return to 4. The total trip takes 6 hours.

. . 4
Vave = 30-4460-2 Z 60-2_ %?0 = 40 mph:

Average speed with respect to distance: The car goes 120 miles at 30 mph
and 120 miles at 60 mph, with a total distance of 240 miles. Therefore
_30-120 + 60- 120
Pave = 240

From Figure 6.5.4 we see that the average with respect to time is smaller
because most of the time was spent at the lower speed of 30 mph.

= 45 mph.

U v
60 T 60 +
30 \ 30
0 4 6 time, ¢ 0 120 240  distance, s
Figure 6.5.4

In general, if y is given both as a function of s and of ¢, y = f(s) = g(¢), then
there is one average of y with respect to s, and another with respect to .

EXAMPLE 3 A car travels with velocity v = 4r + 10, where ¢ is time. Between times
t =0 and ¢t = 4 find the average velocity with respect to (a) time, and (b)
distance.

[o4t +10dr 21 + 106]¢

(a) Uyve 4 4 = 18 (Figure 6.5.5(a)).
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13 v
261 /\F 26+ o
18 19.2 e
10 1045
0 4  time, ¢ 0 72 distance, s
(a) (b)
Figure 6.5.5

(b) Let s be the distance, and put s =0 when ¢ = 0. Since ds = vdt

= (4t + 10) dt, at time t = 4 we have

4
S:J 4t + 10dr = 2% + ]Ot:|
[0}

Tt Jave =
hen Dave 7

33 (4t + 10)ds

4

= 72.

0

(3 (4t + 10)(4¢ + 10) dt

72

_Jg 1662 + 80r + 100 dt 20+ 400 + 10003

72

_1024/3 + 640 + 400

72

PROBLEMS FOR SECTION 6.5

In Problems 1-8, sketch the curve, find the average value of the function, and sketch the rectangle

which has the same area as the region under the curve.

1

N W

Jx)=14+x, —1=<x<1
fx)=4—-x% —-2<x<£2

fx)=/2x—1, 1=x<5
f)=3x 0<x<8

2

o & &K

In Problems 9-22, find the average value of f(x).

9

11

13
15
17
19

21

f(x)=x2—\/;, 0<x<3
J(x) = 6x,

—4<x<2

J)=2x/1+x% -3<x<3

fix)=sinx, 0=<x=n
fix)y=sinxcosx, 0<x<n/2
fx)=e¢Y, —-1=<x<1

S =t t<x<4
X

10

12

14
16
18
20

22

72

~ 19.2 (Figure 6.5.5(b)).

fix)=2—4x, 0<x<4
fy=1+x% -2<x<2
fx)=x3 0<x<2
flxy=1—x%* —-i=x<1

) =x+14/x, 1<x<9

3x

f(x)= ﬁ, —%

i
S,\’Sj

flx)=5x*—8x*+ 10, 0<x<10

fix)=sinx, 0<x<2xm
fixy=x+sinx, 0<x<2n
fx)=e"—2x, 0=<x<2
f)=—", 0<x<4

x+1
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6.6 SOME APPLICATIONS TO PHYSICS

In Problems 23-28, find a point c in the given interval such that f(c) is equal to the average value

of f(x).

23 fX)=2x, —4<x<6 24 fx)=3x% 0<x<3
25 f)=2x, 0<x<2 26 fy=x*—x, —1<x<1
27 fl)=x*3, 0<x<2 28 fy=Ix-3, 1=x<4
29 What is the average distance between a point x in the interval [5, 8] and the origin?
30 What is the average distance between a point in the interval [—4, 3] and the origin?
31 Find the average distance from the origin to a point on the curve y = x¥%,0 < x < 3,
with respect to x.
32 A particle moves with velocity v = 6¢ from time t = 0 to ¢ = 10. Find its average
velocity with respect to (a) time, (b) distance.
33 An object moves with velocity v = ¢ from time ¢ = 0 to ¢ = 2. Find its average velocity
with respect to (a) time, (b) distance.
34 A particle moves with positive velocity v = (1) from t = a to t = b. Thus its average
velocity with respect to time is
PP fde
(b—a)’
Show that its average velocity with respect to distance is
oSy de
Prd

SOME APPLICATIONS TO PHYSICS

The Infinite Sum Theorem can frequently be used to derive formulas in physics.

1 MASS AND DENSITY, ONE DIMENSION

Consider a one-dimensional object such as a length of wire. We ignore the atomic
nature of matter and assume that it is distributed continuously along a line seg-
ment. If the density p per unit length is the same at each point of the wire, then the
mass is the product of the density and the length, m = pL. If L is in centimeters and p
in grams per centimeter, then 1 is in grams. (p is the Greek letter *'rho™.)

Now suppose that the density of the wire varies continuously with the posi-
tion. Put the wire on the x-axis between the points x = a and x = b, and let the
density at the point x be p(x). Consider the piece of the wire of infinitesimal length
Ax and mass Am shown in Figure 6.6.1. At each point between x and x + Ax, the
density is infinitely close to p(x), so

Am = p(x) Ax  (compared to Ax).

Figure 6.6.1 a x b

341



342 6 APPLICATIONS OF THE INTEGRAL

Therefore by the Infinite Sum Theorem, the total mass is

b
m = f p(x)dx.

EXAMPLE 1 Find the mass of a wire 6 cm long whose density at distance x from the

center is 9 — x? gm/cm. In Figure 6.6.2, we put the center of the wire at the
origin, Then

3 3
m =J 9 — x?dx = 9x —%xil = 36 gm.
-3

-3

p=9—.\‘2

Figure 6.6.2

2 MASS AND DENSITY, TWO DIMENSIONS

Imagine a flat plate which occupies the region below the curve y = f(x),/(x) = 0,
from x = ato x = b. If its density per unit area is a constant p gm/cm?, then its mass is
the product of the density and area,

b
m=pA = pJ S(x)dx.

Suppose instead that the density depends on the value of x, p(x). Consider a vertical
strip of the plate of infinitesimal width Ax (Figure 6.6.3). On the strip between x
and x + Ax, the density is everywhere infinitely close to p(x), so

Am = p(x) AA = p(x)[f(x) Ax (compared to Ax).

))

Area AA
density p(x)

Figure 6.6.3
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By the Infinite Sum Theorem,

b
m = f p (%) (x) dx.

EXAMPLE 2 A circular disc of radius » has density at each point equal to the distance
of the point from the y-axis. Find its mass. (The center of the circle, shown in
Figure 6.6.4, is at the origin.) The circle is the region between the curves
—/r? = x* and /r? — x? from —r to r. The density at a point (x, y) in the
disc is {x]. By symmetry, all four quadrants have the same mass. We shall
find the mass m, of the first quadrant and multiply by four.

r
my =f Jr? = x? xdx.
o]

Putu=1*>— x% du= —2xdx;u=r*when x =0,and u = 0 when x = r.

0 r2 r?
my = f —%\/;du =%J \/;du :%-%uf’/zJ =43,
r2 0 0

Then m = 4m, = %

N

Two children on a weightless seesaw will balance perfectly if the product of their
masses and their distances from the fulcrum are equal, m,d, = m,d, (Figure 6.6.5).

Figure 6.6.4

3 MOMENTS, ONE DIMENSION

m d] d» ma

Figure 6.6.5 AN

For example, a 60 1b child 6 feet from the fulcrum will balance a 40 1b child 9 feet
from the fulcrum, 60 -6 = 409, If the fulcrum is at the origin x = 0, the masses m,
and m, have coordinates x; = —d; and x, = d,. The equation for balancing becomes

mxy + myx, = 0.

Similarly, finitely many masses m,, ..., m, at the points x,, ..., x;, will balance about
the point x = 0 if

mix; + -+ mx, =0.

Given a mass m at the point x, the quantity mx is called the moment about the origin.

343
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The moment of a finite collection of point masses my,...,m, at X, ..., Xy
about the origin is defined as the sum

M=mx; + - 4+ mx,.

Suppose the point masses are rigidly connected to a rod of mass zero. If the moment
M is equal to zero, the masses will balance at the origin. In general they will balance
at a point X called the center of gravity (Figure 6.6.6). X is equal to the moment divided
by the total mass m,

M myxy + 4o,

X=—
m my + -+ my

Since the mass m is positive, the moment M has the same sign as the center of gravity ¥.

ny na My my  Ms e

X1 X9 A X3 X Xs X6

X

Figure 6.6.6

Now consider a length of wire between x = ¢ and x = b whose density at
x is p(x). The moment of the wire about the origin is defined as the integral

b
M =f xp(x) dx.

This formula is justified by considering a piece of the wire of infinitesimal length Ax.
On the piece from x to x + Ax the density remains infinitely close to p(x). Thus if
AM is the moment of the piece,

AM =~ x Am = xp(x) Ax (compared to Ax).

The moment of an object is equal to the sum of the moments of its parts. Hence by
the Infinite Sum Theorem,

b
M = f xp(x) dx.
a
If the wire has moment M about the origin and mass m, the center of mass
of the wire is defined as the point
X = M/m.

A point of mass m located at X has the same moment about the origin as the whole
wire, M = Xm. Physically, the wire will balance on a fulcrum placed at the center of
mass.

EXAMPLE 3 A wire between x = 0 and x = | has density p(x) = x? (Figure 6.6.7).

The moment is
1 471
pY
M:f xzxdx=} =1
0 4 o
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The mass and center of mass are

-
N

1
mzf x*dx=3, X=M/m=3.

0

p(x) = x*

Figure 6.6.7 X

4 MOMENTS, TWO DIMENSIONS

A mass m at the point (xy, y,) in the (x, y) plane will have moments M about the x-
axis and M, about the y-axis (Figure 6.6.8). They are defined by
M, = my,, M, = mx,.

Consider a vertical length of wire of mass m and constant density which
lieson the line x = xofromy =atoy =b.
The wire has density

The infinitesimal piece of the wire from y to y + Ay shown in Figure 6.6.9 will have
mass and moments

Am = p Ay,
AM_ =~ yAm = yp Ay  (compared to Ay),
AM, = xy Am = xgp Ay~ (compared to Ay).

YVo4—————————— 4

——————

=

=
b
=

=

Figure 6.6.8 Figure 6.6.9
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The Infinite Sum Theorem gives the moments for the whole wire,

1 1 1
. (12) = i(b + a)m,

b
M, = ly =
. f ypdy = pl5 5

b
M, = J Xop dy = xop(b — a) = xgm.

We next take up the case of a flat plate which occupies the region R under
the curve y = f(x), f(x) = 0, from x = a to x = b (Figure 6.6.10). Assume the density

y
flx)

Am

« b X

Figure 6.6.10

p(x) depends only on the x-coordinate. A vertical slice of infinitesimal width Ax
between x and x + Ax is almost a vertical length of wire between 0 and f(x) which
has area A4 and mass Am = p(x) A4 = p(x)f(x) Ax (compared to Ax). Putting the
mass Am into the vertical wire formulas, the moments are

AM | =~ x Am = xp(x)f(x) Ax {compared to Ax),
AM, =~ 3(f(x) + 0) Am =~ Lp(x) f(x)* Ax (compared to Ax).

Then by the Infinite Sum Theorem, the total moments are

b
M, = [ o f0 dx,

b
M, = [ 3ptof o dx

The center of mass of a two-dimensional object is defined as the point (X, 7)
with coordinates

X =M/m, V= M.,/m.

A single mass m at the point (%, ¥) will have the same moments as the two-dimensional
body, M, = mjy, M, = mXx. The object will balance on a pin placed at the center of
mass.

If a two-dimensional object has constant density, the center of mass depends
only on the region R which it occupies. The centroid of a region R is defined as the
center of mass of an object of constant density which occupies R. Thus if R is the
region below the continuous curve y = f(x) from x = a to x = b, then the centroid
has coordinates

b b
X= J xf(x)dx/A, ¥ =J 11 (x)* dx/A,

where A is the area A = |1 f(x) dx.
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EXAMPLE 4 Find the centroid of the triangular region R bounded by the x-axis, the
y-axis, and the line y = 1 — 4x shown in Figure 6.6.11. R is the region
under the curve y = 1 — 1x from x = 0 to x = 2. The area of R is

2 2
A:f 1—%xdx=x—%x2} = 1.

0 0

The centroid is (X, j) where

2 2
,?zj x(1 — ix)dx = ix? ~%x{| =2

0 0

2 2
)7=J. %(1—%x)2dx=J 3 —Ix + ix%dx
0

2
1, 1.2, 1 _1
= $X — %X +24X3:l =1,
0

(0]

Figure 6.6.11

The following principle often simplifies a problem in moments.

If an object is symmetrical about an axis, then its moment about that axis is
zero and its center of mass lies on the axis.

PROOF Consider the y-axis. Suppose a plane object occupies the region under the
curve y = f(y) from —a to a and its density at a point (x, y) is p(x) (Figure
6.6.12). The object is symmetric about the y-axis, so for all x between 0 and «,

f(=x)=f(x),  p(—x) = p(x).
a 0 a

Then M, = f xf(x)p(x)dx = f xf(x)p(x) dx + f xf(x)p(x) dx
—a —a 0

0 a
- j (=) f (=0~ x) d( ) + j xf(x)p(x) dx = 0.
a 0

Also, X = M /m = 0.

f(—=x) S

X gm—————
®® J»——————-—

4 X

I

—dad

Figure 6.6.12 Symmetry about the y-axis
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EXAMPLE 5 Find the centroid of the semicircle y = . /1 — x? (Figure 6.6.13). By
symmetry, the centroid is on the y-axis, X = 0. The area of the semicircle is 7.

Then
¥
K (X, V)
—1 | X
Figure 6.6.13
5 WORK

A constant force F acting along a straight line for a distance s requires the amount of
work

W = Fs.

For example, the force of gravity on an object of mass m near the surface of the
earth is very nearly a constant g times the mass, F = gm. Thus to lift an object of mass
m a distance s against gravity requires the work W = gms. The following principle is
useful in computing work done against gravity.

The amount of work done against gravity to move an object is the same as it
would be if all the mass were concentrated at the center of mass. Moreover,
the work against gravity depends only on the vertical change in position of the
center of mass, not on the actual path of its motion.

That is, W = gms where s is the vertical change in the center of mass.

EXAMPLE 6 A semicircular plate of radius one, constant density, and mass m lies flat
on the table. (a) How much work is required to stand it up with the straight
edge horizontal on the table (Figure 6.6.14(a))? (b) How much work is
required to stand it up with the straight edge vertical and one corner on the
table (Figure 6.6.14(b))? From the previous exercise, we know that the

o e ———

(x, )

(a) (b)
Figure 6.6.14
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center of mass is on the central radius 4/3z from the center of the circle.
Put the x-axis on the surface of the table.

(a) The center of mass is lifted a distance 4/37 above the table. Therefore
W = mg +4/(3n).
(b) The center of mass is lifted a distance 1 above the table, so W = mg.

Suppose a force F(s) varies continuously with the position s and acts on an
object to move it from s = a to s = b. The work is then the definite integral of the
force with respect to s,

W= J;b F(s) ds.

To justify this formula we consider an infinitesimal length As. On the interval
from s to s + As the force is infinitely close to F(s), so the work AW done on this

interval satisfies
AW ~ F(s) As (compared to As).

By the Infinite Sum Theorem,
b
W= f F(s)ds.

EXAMPLE 7 A spring, shown in Figure 6.6.15, of natural length L exerts a force
F = ¢x when compressed a distance x. Find the work done in compressing
the spring from length L — a to length L — b.

b b
W = f exdx = %cxz} = Je(b? — d?).

a

7777081777

(0]

al b L
P
L—~aq ——

EXAMPLE 8 The force of gravity between two particles of mass m,; and m, is

Figure 6.6.15

F = gm;m,/s?,
where g is a constant and s is the distance between the particles. Find the work
required to move the particle m, from a distance a to a distance b from m,
(Figure 6.6.16).

b b
My
W = f Fds = j & Ltds = gmlmz(—s‘l):]
a a S

b

B 1 1
= gmmy| o — 7).

a

l ny Hig

, 17 b ¥

Figure 6.6.16
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PROBLEMS FOR SECTION 6.6

In Problems 1-16 below, find (a) the mass, (b) the moments about the x- and y-axes, (c) the center
of mass of the given object.

1 A wire on the x-axis, 0 < x < 2 with density p(x) = 2.

2 A wire on the x-axis, 0 < x < 4, with density p(x) = x°.

3 A wire on the y-axis, 0 < y < 4, whose density is twice the distance from the lower
end of the wire times the square of the distance from the upper end.

4 A straight wire from the point (0, 0) to the point (1, 1) whose density at each point (x, x)
is equal to 3x.

5 A wire of length 6 and constant density k which is bent in the shape of an L covering
the intervals [0, 2] on the x-axis and [0, 4] on the y-axis.

6 The plane object bounded by the x-axis and the curve y = 4 — x2, with constant
density k.

The plane object bounded by the x-axis and the curve y = 4 — x2, with density p(x) = x2.
The plane object bounded by the lines x = 0,y = x, y = 4 — 3x, with density p(x) = 2x.
The plane object between the x-axis and the curve y = x2, 0 < x < 1, with density

px) = 1/x.

10 The object bounded by the x-axis and the curve y = x3, 0 < x < 1, with density
plx) =1 — x2

11 The object bounded by the x-axis and the curve y = 1/x, 1 < x <2, with density
plx) = /x.

12 The disc bounded by x? + y? = 4 with density p(x) = /4 — x2.

13 The object in the top half of the circle x> + p? = 1, with density p(x) = 2|x].

14 The object between the x-axis and the curve y = /1 — x*, with density equal to the
cube of the distance from the y-axis.

15 The object bounded by the x-axis and the curve y = 4x — x2, with density p(x) = 2x.

16 The object bounded by the curves y = —f(x) and y = f(x), 0 < x < 3, with density

p(x) = 4/f(x). (f(x) is always positive.)
[n Problems 17-24, sketch and find the centroid of the region bounded by the given curves.
17 y=0 y=2, —1<x<£5 18 y=0, x=0, 3x+4dy=12
19 y=0, y=1-—x? 20 y=0, y=1—-x% 0<x<1

21 y=0 y=./9—x* 22 y=0 y=./9—-x% 0<x<3
23 y=0, y=x'"3 0<x<I

24 x=0, y=0, J/x+ Jy =1, first quadrant

25 Find the mass of an object in the region under the curve y = sinx, 0 < x < 7, with
density p(x) = cos? x.

26 Find the mass of an object in the region between the curves y = sin x cos x, y = sin x,
0 < x < n/2, with density p(x) = cos x.

27 Find the mass of an object in the region under the curve y = ¢*, —1 < x < [, with
density e' 2,

28 Find the mass of an object in the region under the curve y = Inx, 1 < x < ¢, with
density p(x) = 1/x.

29 Find the centroid of the region under the curve y = x 72, [ < x < 2,

30 Find the centroid of the region under the curve y = 1/\/;, [ <x<4

31 Find the centroid of the region bounded by y = 0, y = x(1 — x%),0 < x < 1.

O 32 Show that the moments of an object bounded by the two curves y = f(x) and y =

glx), a < x < b, are
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33

K]

35

36

37

38

39

40

41

42

43

6.7 IMPROPER INTEGRALS

b b
M, = f LK) — [P dx, M, = j xp()(glx) — f(x)) dx.

a

Use the formulas in Problem 32 to find the centroid of the region between the curves
y=x*andy = x. 7
A piece of metal weighing 50Tbs is in the shape of a triangle of sides 3, 4, and 5 ft. Find
the amount of work required to stand the piece up on (a) the 3 ft side, (b) the 4 ft side.
A 4 ft chain lies flat on the ground and has constant density of 5 1bs/ft. How much work
is required to lift one end 6 ft above the ground?

In Problem 35, how much work is required to lift the center of the chain 6 ft above the
ground?

A 4 ft chain has a density of 4x lbs/ft at a point x ft from the left end. How much work
is needed to lift the left end 6 ft above the ground?

In Problem 37, how much work is needed to lift both ends of the chain to the same point
6 ft above the ground?

A spring exerts a force of 4x 1bs when compressed a distance x. How much work is
needed to compress the spring 5 ft from its natural length?

A bucket of water weighs 10 Ibs and is tied to a rope which has a density of {5 lb/ft.
How much work is needed to lift the bucket from the bottom of a 20 ft well?

The bucket in Problem 40 is leaking water at the rate of £ Ib/sec and is raised from the
well bottom at the rate of 4 ft/sec. How much work is expended in lifting the bucket?
Two electrons repel each other with a force inversely proportional to the square of the
distance between them, F = k/s%. If one electron is held fixed at the origin, find the work
required to move a second electron along the x-axis from the point (10, 0) to the point
(5,0).

If one electron is held fixed at the point (0, 0) and another at the point (100, 0), find the
work required to move a third electron along the x-axis from (50, 0) to (80, 0).

IMPROPER INTEGRALS

What is the area of the region under the curve y = 1/\/; from x =0 to x =1
(Figure 6.7.1(a))? The function 1/\/§ is not continuous at x = 0, and in fact 1/\/2 is
infinite for infinitesimal & > 0. Thus our notion of a definite integral does not apply.
Nevertheless we shall be able to assign an area to the region using improper integrals.
We see from the figure that the region extends infinitely far up in the vertical direction.
However, it becomes so thin that the area of the region turns out to be finite.

The region of Figure 6.7.1(b) under the curve y = x 3} fromx = I tox = o

ki
5~

(a) (b)

Figure 6.7.1
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352 6 APPLICATIONS OF THE INTEGRAL

extends infinitely far in the horizontal direction. We shall see that this region, too,
has a finite area which is given by an improper integral.
Improper integrals are defined as follows.

DEFINITION

Suppose [ is continwous on the half-open interval (a, b]. The improper integral
of [ from ato b is defined by the limit

b b
J f(x)dx = lim | f(x)dx.

u—a P

If the limit exists the improper integral is said to converge. Otherwise the
improper integral is said to diverge.

The improper integral can also be described in terms of definite integrals
with hyperreal endpoints. We first recall that the definite integral

D(u, 1) = J“.f(x) dx

is a real function of two variables u and v. If u and ¢ vary over the hyperreal numbers
instead of the real numbers, the definite integral [ f(x)dx stands for the natural
extension of D evaluated at (u, v),

*u,v) = J‘r f(x)dx.

Here is the description of the improper integral using definite integrals with hyperreal
endpoints.

Let f be continuous on (a, b].

) [af(x)dx =S if and only if [b, . f(x)dx = S for all positive infinite-
simal e.

(2) [2f(x)dx = = (or —=) if and only if [},,f(x)dx is positive infinite
(or negative infinite} for all positive mﬁmteszmal e.

1
1
EXAMPLE 1 Find j —=dx. Foru > 0,

0 /X
ful \%d\ = 2\5}:: 2 - 2/u

f\/dth fu\[czx_ugrg{z—z\/)_z

Therefore the region under the curve y = l/ﬁ from O to 1 shown in Figure
6.7.1(a) has area 2, and the improper integral converges.

Then

EXAMPLE 2 Find [{ x™?dx. For u > 0,



6.7

1 1
J x%dx = —x'l} =

u

IMPROPER INTEGRALS

| =

1+

lim

u—0*

This time

t 1
x %dx = lim(—1+) 0.
u

u u—0*
The improper integral diverges. Since the limit goes to infinity we may write

1
j x"2dx = oo.

0

The region under the curve in Figure 6.7.2 is said to have infinite area.

Warning : We remind the reader once again that the symbols o0 and — oo
are not real or even hyperreal numbers. We use them only to indicate the behavior
of a limit, or to indicate an interval without an upper or lower endpoint.

y

Figure 6.7.2

EXAMPLE 3 Find the length of the curve y = x*3,0 < x < 8. From Figure 6.7.3 the
curve must have finite length. However, the derivative

dy B 2 i
dx_3x

is undefined at x = 0. Thus the length formula gives an improper integral,

8 8 8 9 2/3 4
= J 1 + (dy/dx)* dx = J 1+ 4x 2P dx = f LT-;—
0 0 0 9x?/

8 1 8 I 373
— -2/3 I -
= L EWTE 9x*? + 4dx = ,,1_1,%1¢J:, FMTE 9x*3 + 4 dx.

p = x2/3

Figure 6.7.3
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Let u = 9x%7 + 4, du = 6x~ '3 dx. The indefinite integral is
j 1/3,/9\2’3+4(1\—f \/;du—~ 113/2+C

1
= 2)7(9,\'2"3 +4P7 + C.

a—=0"~ a

. It

Therefore s = lim 5(9,\'2’3 + 4)3’-:|
I

= 57(0-4 + 477 = (9.0 + 47 = (10\/6—1

Notice that we use the same symbol for both the definite and the improper
integral. The theorem below justifies this practice.

THEOREM 1

If [ is continuous on the closed interval [a, b) then the improper integral of f
from a to b converges and equals the definite integral of f from a to b.

PROOF We have shown in Section 4.2 on the Fundamental Theorem that the
function

b
Flu) = f fix)dx

is continuous on [a, b). Therefore

b
J. f(x)dx = 11m j( ) dx,

where |2 f(x)dx denotes the definite integral.

We now define a second kind of improper integral where the interval is
infinite.

DEFINITION

Let f be continuous on the half-open interval [a, >c). The improper integral
of f from ato x is defined by the limit

ji [{x)dx = lim f

[l s a

The improper integral is said to converge if the limit exists and to diverge
otherwise.

Here is a description of this kind of improper integral using definite integrals
with hyperreal endpoints.

Let f be continuous on [a, ).

() {7 f(x)dx = S if and only if lH x)dx = S for all positive infinite H.
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(2) | f(x)dx = oo (or —o0) if and only if [¥ f(x)dx is positive infinite (or
negative infinite) for all positive infinite H.

EXAMPLE 4 Find the area under the curve y = x ™3 from 1 to . The area is given by
the improper integral

Foru>0,fx*3dx -1
1

I
N
=
|
N
L—
Il
]
N
=
~
+
o=

Thus J(x”dx: lim | x3dx = lim(—{u?+4) =1
1

u— o 1 U=

So the improper integral converges and the region has area 4. The region is
shown in Figure 6.7.1(b) and extends infinitely far to the right.

EXAMPLE 5 Find the area under the curve y = x %3,1 < x < o0,

0 u
A= f X723 dx = lim | x 3 dx
1

[ v el 1

U0 1 u=o

= lim 3x”3:| = lim 3(u'? — 1) = =.

The region is shown in Figure 6.7.4 and has infinite area.

mlﬁlr}lte area W 7

Figure 6.7.4

EXAMPLE 6 The region in Example 5 is rotated about the x-axis. Find the volume
of the solid of revolution.

We use the Disc Method because the rotation is about the axis of the indepen-
dent variable. The volume formula gives us an improper integral.

o

f n(x‘m)zdx:f x4 dx
1

1

|14

u u
Hm | ax *?dx = lim —3712)(_1/3:]

u—ro Jy u— o 1
= lim 3n(—u" ' + 1) = 3x.
u—rcc

So the solid shown in Figure 6.7.5 has finite volume V = 3x.
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volume = 3r

Figure 6.7.5

The last two examples give an unexpected result. A region with infinite area
is rotated about the x-axis and generates a solid with finite volume! In terms of
hyperreal numbers, the area of the region under the curve y = x~ %3 from 1 to an
infinite hyperreal number H is equal to 3(H'* — 1), which is positive infinite. But the
volume of the solid of revolution from 1 to H is equal to

3n(l — H™13),

which is finite and has standard part 3=.

We can give a simpler example of this phenomenon. Let H be a positive
infinite hyperinteger, and form a cylinder of radius 1/H and length H? (Figure 6.7.6).
Then the cylinder is formed by rotating a rectangle of length H?, width 1/H, and
infinite area H?/H = H. But the volume of the cylinder is equal to x,

V = nr*h = n(1/H*(H?) =

radius &

4
H T T DT e

)
! length H? ﬁ]|

Figure 6.7.6 Area = H, volume =

Imagine a cylinder made out of modelling clay, with initial length and
radius one. The volume is 7. The clay is carefully stretched so that the cylinder gets
longer and thinner. The volume stays the same, but the area of the cross section keeps
getting bigger. When the length becomes infinite, the cylinder of clay still has finite
volume V = =, but the area of the cross section has become infinite.

There are other types of improper integrals. If /' is continuous on the half-open
interval [a, b) then we define

b u

J ) dx = lim | f(x)dx.

u=b- J,

If f'is continuous on ( ] we define

f flx)dx = lllﬁirﬁn{ f“b f(x)dx.

We have introduced four types of improper integrals corresponding to the four types
of half-open intervals
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[a, b), [a, o), (a, b], (— o0, b].

By piecing together improper integrals of these four types we can assign an improper
integral to most functions which arise in calculus.

DEFINITION

A function [ is said to be piecewise continuous on an interval I if f is defined
and continuous at all but perhaps finitely many points of 1. In particular, every
continuous function is piecewise continuous.

We can introduce the improper integral [® f(x) dx whenever f is piecewise
continuous on I and g, b are either the endpoints of I or the appropriate infinity
symbol. A few examples will show how this can be done.

Let f be continuous at every point of the closed interval [a, b] except at one
point ¢ where a < ¢ < b. We define

J;b fx)dx = J: f(x)dx + J;b f(x)dx.

EXAMPLE 7 Find the improper integral (', x™'?dx. x™'/ is discontinuous at
x = 0. The indefinite integral is

J‘x*’/3 dx = 3x*? + C.

[} u u
Then f x~ 3 dx = lim x 1P dx = lim 3x??
-8 u=0-J_g u—0- _8
: 3,,2/3 3 213 3
— lim Gu?® — 3(—8%) = —3.4 = —¢.
u—0-
1
Similarly, f xR dx = 3.
0
1
So f x Mdx=-6+3= -3
-8

and the improper integral converges. Thus, the region shown in Figure 6.7.7
has finite area.

y=x1/3

-8
V7 7 270 x

Figure 6.7.7
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If £ is continuous on the open interval (g, b), the improper integral is defined
as the sum

Lbf(x) dx = J: flx)dx + J;bf(x) dx,

where ¢ is any point in the interval (a, b). The endpoints ¢ and b may be finite or infinite.
It does not matter which point ¢ is chosen, because if e is any other point in («, b), then

Jpcf(x) dx + jbf(x) dx = ch(x) dx + ( Jef(x) dx + fbf(x) dx)

= (ch(x) dx + J;ef(x) dx

= J.ef(x) dx + f:f(x) dx.

b
+J f(x)dx

22 1
EXAMPLE 8 Find f —= + ——=dx
0 \/: J2 =X
The function 2/./x + 1/./2 — x is continuous on the open interval (0, 2) but
discontinuous at both endpoints (Figure 6.7.8). Thus

dx +

L) 1 12 1 22 1
——t X = —t = ———  ————dx.
Joﬁ+‘/2—xx J-o\/;+,/2~x Jl\/;+1/2—x(\

Figure 6.7.8

First we find the indefinite integral.

dx =4, /x - 2/2 — x+ C.

N

) 1 ) 1
Th J’ I J— S}
T aT AT T AT AT
lim (4\5—24/2—\)}

=0~

-2 —-(0-2/2=2+2/2

fa

i
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L) 1 ) 1
b —dx =i L
Also L \/;+«/2-x o vi?f1ﬁ+,/2—x{f
lim (4/x — 2, /2—x):l
1

v—>2 "

—@42-0-@d—-2=4/2-2

2
Therefore L % + ﬁdx =2 +2/2)+@4/2 -2 =62

| 1
ExampLE 9 Find -+ ——dx
AMPL mn jox2+(x—1)2x
The function 1/x? + 1/(x — 1) is continuous on the open interval (0, 1) but
discontinuous at both endpoints. The indefinite integral is

[hodw i 1o
-+ —5dx= —— — .
x2 (x — 1) x x-1

1z 1 1 1 12
We have ( —2+’dx=lim(———- 1 ):|
X

Joo X (X - 1)2 u—0* x—1 u
e

= lim (- + = w
u—0* \U u—1

Similarly we find that

JI 1+ 1 p
———dx = w.
1/2X2 (X—l)2

In this situation we may write

f11+ L
— ERE—— . = CC
o k-1 T

and we say that the region under the curve in Figure 6.7.9 has infinite area.

X -

12:_ %

1 X

Figure 6.7.9

Remark Tn Example 9 we are faced with a sum of two infinite limits. Using the rules
for adding infinite hyperreal numbers as a guide we can give rules for sums
of infinite limits.

If H and K are positive infinite hyperreal numbers and ¢ is finite, then

359
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H + K is positive infinite,
H + ¢ is positive infinite,
— H — K is negative infinite,
— H + ¢ is negative infinite,

H — K can be either finite, positive infinite, or negative infinite.

By analogy, we use the following rules for sums of two infinite limits or of a
finite and an infinite limit. These rules tell us when such a sum can be con-
sidered to be positive or negative infinite. We use the infinity symbols as
a convenient shorthand, keeping in mind that they are not even hyperreal
numbers.

oo — oc is undefined.

EXAMPLE 10 Find [ xdx. We see that

- — - —
u =) u u XL I

o 0 0
J‘ xdx = lim xdx = lim ix?| = —oc,
.

and f V xdx = .

0
Thus [©_ x dx diverges and has the form oo — cc. We do not assign it any
value or either of the symbols co or — cc. The region under the curve f(x) = x
is shown in Figure 6.7.10.

Figure 6.7.10

It is tempting to argue that the positive area to the right of the origin and the
negative area to the left exactly cancel each other out so that the improper
integral is zero. But this leads to a paradox.

Wrong: [%_xdx =0.Letv=x + 2,dv = dx. Then

f (x+2)dx:f‘ vdv = 0.

- X



PROBLEMS FOR SECTION 6.7

In Problems 1-36, test the improper integral for convergence and evaluate when possible.

1

11

13

15

17

19

21

23

25

27

29

31

33

Subtracting

But

So we do not give the integral [*_ xdx the value 0, and instead leave it

undefined.

o

f x~ 2 dx
2
®

f x V2 4x
1

1/2
f (2x — 1) dx
0

J‘4x2+2x—1dx
0

J‘Jx(l + x3) 2 dx

0

1
j x"W2 o xT2dx
0

Jq (x — 1)y 23 dx

o]

1
f x~ 23 dx
-1

1
J- 2x(x? — 1)" Y3 dx
0

1

J. (2x — 1) 3 dx
0

j< x? dx
f —d\c
J x% dx

*® 3x
L Gt

fy —Zx—dx
—ao«/X2+1

3
f =D+ (3-x)"Mdx
1

"2 sin §
f = do
o cos‘f

j“ (x+2)—xdx=0—0=0, j

f 2dx = oo.

2

10

12

14

16

18

20

22

28

30

6.7 IMPROPER INTEGRALS

8

-

1
J‘ x—0.9 dx
0

0
J (2x — 1) 3dx

0
J x 13 dx
-1

oz
x 2?2 — x"3dx

5

o
D e

S

1

(1 —x)"Y%dx

S

0
1

f x"2dx

—1

! X
—————dx

Jo J1—x?

1
f 2x 3 dx
—1

fl (B3x — 1) 3dx
0

J:x (2x — 1) dx

T

f x4 dx
-0
o0

f x 732 dx
0

f Ixl(x? + 1)73dx

3
J. x— D724+ (x -
1
fa idx

~s x|

f sin 0
~/ COS

2dx = 0.

3)" 2dx
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36
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39
40
41

42
43

44

45

46

47
48
49

50
51

52

53

54

55

EXTRA
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1 for0 < x <1
10
f f(x)dx where f(x) =< 6 forl <x<35
)

3 for § <x <10

I/x if0<x<I

f ‘ fx)dx where f(x) = {
0 -2 ifl <x

J5°¢ x 7 dx converges when

Show that if r is a rational number, the improper integral
r < 1 and diverges when r > 1.
Show that if r is rational, the improper integral j

diverges when r < 1.

12 X "dr converges when r > 1 and

Find the area of the region under the curve y = 4x~ 2 from x = [ to x = .
Find the area of the region under the curve y = 1/ /2x — I fromx = {to x = 1,

“Yand y = x"Y? from x =0

Find the area of the region between the curves y = x
tox = 1.

Find the area of the region between the curves y = —x Jand y = x 24, 1 < x < =,
Find the volume of the solid generated by rotating the curve y = l/x, | < x < =,
about (a) the x-axis, (b) the y-axis.

Find the volume of the solid generated by rotating the curve y = x 13, 0 < x < |,
about (a) the x-axis, (b) the y-axis.

Find the volume of the solid generated by rotating the curve y = x 32, 0 < x < 4,
about (a) the x-axis, (b) the y-axis.

Find the volume generated by rotating the curve y = 4x73, — = < x < -2, about
(a) the x-axis, (b) the y-axis.

Find the length of the curve y = / - %.\'\& fromx=0tox = 1.

Find the length of the curve y = 2x¥3 — 3x*3 fromx =0tox = L.

Find the surface area generated when the curve y = /x — 4x./x,0 < x < 1, is rotated

about (a) the x-axis, (b) the y-axis.

Do the same for the curve 3 = 3x'° — #x33 0 < x < |,

(a) Find the surface area generated by rotating the curve y = /r 0<x <=1, about
the x-axis.

(b) Set up an integral for the area generated about the y-axis.

Find the surface area generated by rotating the curve y = x%3, 0 < x < 8, about the

x-axis,

Find the surface area generated by rotating the curve y = . /r? — x2,0 < x < a, about

(a) the x-axis, (b) the y-axis (0 < a < r).

The force of gravity between particles of mass n, and m, is F = gm m,/s* where s is the

distance between them. If m; is held fixed at the origin, find the work done in moving

m, from the point (1, 0) all the way out the x-axis.

Show that the Rectangle and Addition Properties hold for improper integrals.

PROBLEMS FOR CHAPTER 6

The skin is peeled off a spherical apple in four pieces in such a way that each horizontal
cross section is a square whose corners are on the original surface of the apple. If the
original apple had radius r, find the volume of the peeled apple.

Find the volume of a tetrahedron of height /1 and base a right triangle with legs of length
aand b.



EXTRA PROBLEMS FOR CHAPTER 6

Find the volume of the wedge formed by cutting a right circular cylinder of radius r
with two planes, meeting on a line crossing the axis, one plane perpendicular to the
axis and the other at a 45° angle.

Find the volume of a solid whose base is the region between the x-axis and the curve
y = 1 — x?, and which intersects each plane perpendicular to the x-axis in a square.

In Problems 5-8, the region bounded by the given curves is rotated about (a) the x-axis, (b) the
y-axis. Find the volumes of the two solids of revolution.

5

o 0 &

10

11
12
13
14
15
16

17

18
19
20

21

22

23

25

26

27

y=0 y=,/4—x* 0<x<1

y=0, y=x¥ 0<x<1

y=x, y=4—x, 0<x<2

y=x% y=x% 0=<x<1, where0<g<p

The region under the curve y = /1 — x?, 0 < x < 1, where 0 < p, is rotated about
the x-axis. Find the volume of the solid of revolution.

The region under the curve y = (x? + 4)!/3,0 < x < 2, is rotated about the y-axis.
Find the volume of the solid of revolution.

Find the length of the curve y = (2x + 1)*2,0 < x < 2.

Find the length of thecurve y = 3x — 2,0 < x < 4.

Find the length of thecurve x =3t + 1,y =2 — 4,0 <t < .

Find the length of the curve x = f(t),y = f(f) + c,a <t < b.

Find the length of the line x = At + B,y=Ct+ D,a<t < b.

Find the area of the surface generated by rotating the curve y = 3x?> — 2,0 < x < 1,
about the y-axis.

Find the area of the surface generated by rotating the curve x = At* 4+ Bt,y = 2At + B,
0 <t <1, about the x-axis. A > 0, B > 0.

Find the average value of f(x) = x/\ /x> + 1,0 < x < 4.

Find the average value of f(x) = x%, 1 < x < h,p# —1L.

Find the average distance from the origin of 2 point on the parabola y = x2,0 < x < 4,
with respect to x.

Given that f(x) = x?, 0 < x < 1, p a positive constant, find a point ¢ between 0 and 1
such that f(c) equals the average value of f(x).

Find the center of mass of a wire on the x-axis, 0 < x < 2, whose density at a point
x is equal to the square of the distance from (x, 0) to (0, 1).

Find the center of mass of a length of wire with constant density bent into three line
segments covering the top, left, and right edges of the square with vertices (0, 0), (0, 1),
(1, 1), (1,0).

Find the center of mass of a plane object bounded by the lines y =0,y = x,x = 1,
with density p(x) = 1/x.

Find the center of mass of a plane object bounded by the curves x = y2, x = 1, with
density p(y) = y*.

Find the centroid of the triangle bounded by the x- and y-axes and the line ax + by = ¢,
where a, b, and ¢ are positive constants.

A spring exerts a force of 10x Ibs when stretched a distance x beyond its natural length
of 2 ft. Find the work required to stretch the spring from a length of 3 ft to 4 ft.

In Problems 28-36, test the improper integral for convergence and evaluate if it converges.

28

-2 o
f x"3dx 29 J- (x +2)" Y4 dx

0

-
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30

32

34

36
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0 0 )
J. x"*dx 31 xS dx
. -1
s dx 33 fli RS NN
J U SRR
L 1 A |
e —=—=—dX 35 j ——dx
Jo \ﬂ I —x -4 /x|

A wire has the shape of a curve y = f(x), a < x < b, and has density p(x) at value x.
Justify the formulas below for the mass and moments of the wire.

b —
m = f px)/1 + (f(x)) dx,

a

b
M, = f S0/ T+ (S dx,

b
M, = I xp(x)/1 + (f(x))? dx.

Find the mass, moments, and center of mass of a wire bent in the shape of a parabola
y =x?% —1 < x < 1, with density p(x) = /1 + 4x2,

Find the mass, moments, and center of mass of a wire of constant density p bent in the
shape of the semicircle y = . /1 — x%, ~1 < x < 1,

An object fills the solid generated by rotating the region under the curve y = f(x),
a < x < b, about the x-axis. Its density per unit volume is p(x). Justify the following
formula for the mass of the object.

b
i = J () f(x))? dx.

A container filled with water has the shape of a solid of revolution formed by rotating
the curve x = g(y), a < y < b, about the (vertical) y-axis. Water has constant density
p per unit volume. Justify the formula below for the amount of work needed to pump
all the water to the top of the container.

b
W= [ pnlels)6 — ).

Find the work needed to pump all the water to the top of a water-filled container in the
shape of a cylinder with height h and circular base of radius r.

Do Problem 46 if the container is in the shape of a hemispherical bow] of radius .

Do Problem 46 if the container is in the shape of a cone with its vertex at the bottom,
height h, and circular top of radius r.

The pressure, or force per unit area, exerted by water on the walls of a container is equal
to p = p(b — y) where p is the density of water and b — y the water depth. Find the

total force on a dam in the shape of a vertical rectangle of height b and width w, assuming
the water comes to the top of the dam.

A water-filled container has the shape of a solid formed by rotating the curve x = g(y),
a <y < b about the (vertical) y-axis. Justify the formula below for the total force on
the walls of the container.

b -
F =f 2nplb — y)x./ldx/dy)* + 1dy



7.1

TRIGONOMETRIC
FUNCTIONS

TRIGONOMETRY

In this chapter we shall study the trigonometric functions, i.e., the sine and cosine
function and other functions that are built up from them. Let us start from the
beginning and introduce the basic concepts of trigonometry.

The unit circle x? + y? = 1 has radius 1 and center at the origin.

Two points P and Q on the unit circle determine an arc @, an angle /. POQ,
and a sector POQ. The arc starts at P and goes counterclockwise to Q along the
circle. The sector POQ is the region bounded by the arc @ and the lines OP and 0Q.
As Figure 7.1.1 shows, the arcs @ and @’ are different.

0 - Q
PO eF
(0] O
P P
Arc l/’—Q\ Arc @’
Sector POQ Sector QOP

Figure 7.1.1

Trigonometry is based on the notion of the length of an arc. Lengths of
curves were introduced in Section 6.3. Although that section provides a useful
background, this chapter can also be studied independently of Chapter 6. As a starting
point we shall give a formula for the length of an arc in terms of the area of a sector.
(This formula was proved as a theorem in Section 6.3 but can also be taken as the
definition of arc length.)
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DEFINITION

o . o
The length of an arc PQ on the unit circle is equal to twice the area of the
sector POQ, s = 2A.

This formula can be seen intuitively as follows. Consider a small arc ﬁ@ of
length As (Figure 7.1.2). The sector POQ is a thin wedge which is almost a right
triangle of altitude one and base As. Thus A4 ~ $As. Making As infinitesimal and
adding up, we get 4 = 1s.

The number = ~ 3.14159 is defined as the area of the unit circle. Thus the
unit circle has circumference 2m.

The area of a sector POQ is a definite integral. For example, if P is the point
P(1, 0) and the point Q(x, y) is in the first quadrant, then we see from Figure 7.1.3 that
the area is

1
Alx) = 3x /1 — ,\‘2+J J1 =t

Notice that A(x) is a continuous function of x. The length of an arc has the following
basic property.

o
As Qx, »)
! P
1 A(x)

o) 6] P(1, 0)
Figure 7.1.2 Figure 7.1.3
THEOREM 1

Let P be the point P(1,0). For every number s between 0 and 2n there is a point
Q on the unit circle such that the arc IS_Q has length s.

PROOF  We give the proof for s between 0 and n/2, whence
0 < 3s < n/4

Let A(x) be the area of the sector POQ where Q = Q(x, y) (Figure 7.1.4).
Then A(0) = n/4, A(1) = 0 and the function A(x)is continuous for 0 < x < [,
By the Intermediate Value Theorem there is a point x, between 0 and 1
where the sector has area is,

A(XO) = %S.
Therefore the arc 1§Q has length
2A(xq) = s.
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N\
N\

Figure 7.1.4

Arc lengths are used to measure angles. Two units of measurement for angles
are radians (best for mathematics) and degrees (used in everyday life).

DEFINITION

Let P and Q be two points on the unit circle. The measure of the angle /. POQ
in radians is the length of the arc IS_Q A degree is defined as

1° = =/180 radians,

whence the measure of £ POQ in degrees is 180/x times the length of }3@

Approximately, 1° ~ 0.01745 radians,
I radian ~ 57°18' = (57:8)°.

A complete revolution is 360° or 2x radians. A straight angle is 180° or « radians. A
right angle is 90° or =/2 radians.

It is convenient to take the point (1, 0) as a starting point and measure arc
length around the unit circle in a counterclockwise direction. Imagine a particle
which moves with speed one counterclockwise around the circle and is at the point
(1,0)at time ¢ = 0. It will complete a revolution once every 2x units of time. Thus if the
particle is at the point P at time ¢, it will also be at P at all the times t + 2kn, k an
integer. Another way to think of the process is to take a copy of the real line, place the
origin at the point (1, 0), and wrap the line around the circle infinitely many times with
the positive direction going counterclockwise. Then each point on the circle will
correspond to an infinite family of real numbers spaced 2z apart (Figure 7.1.5).

3r 5r

™
esey —7, E’ —2—-,.-.

vees —270°, 90°, 450°,...

veey — T, T, 3T, .. veey, —2m, 0, 27, ...

oo, — 180°, 180°, 540°,... .oy —360°, 0°, 360°,...

Figure 7.1.5 vers —90°, 270°, 630°....
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The Greek letters 0 (theta) and ¢ (phi) are often used as variables for angles
or circular arc lengths.
DEFINITION

Let P(x,y) be the point at counterclockwise distance 0 around the unit circle
starting from (1,0). x is called the cosine of 0 and y the sine of 0,

x = cos b, y = sin f.
P(x, y)
1 0
sin 8
O| cosd (1, 0)

Figure 7.1.6

Cos 6-and sin 8 are shown in Figure 7.1.6. Geometrically, if 0 is between 0
and 7/2 so that the point P(x, y) is in the first quadrant, then the radius OP is the
hypotenuse of a right triangle with a vertical side sin 8 and horizontal side cos §. By
Theorem 1, sin 8 and cos 6 are real functions defined on the whole real line. We
write sin” 0 for (sin 8)", and cos” 8 for (cos 8Y". By definition (cos 8, sin ) = (x, y) is a
point on the unit circle x2 4+ y? = |, so we always have

sin? 6 + cos? 0 = 1.
Also, —1<sinf <1, —1 <cosb <1,
Sin 0 and cos 6 are periodic functions with period 2n. That is,
sin (0 + 27n) = sin B,
cos (0 + 2mn) = cos O

for all integers n. The graphs of sin 0 and cos 0 are infinitely repeating waves which
oscillate between — [ and + 1 (Figure 7.1.7).

For infinite values of 8, the values of sin 0 and cos 0 continue to oscillate
between —1 and [. Thus the limits

lim sin 9, lim sin 0,
08— x 60— — =~
lim cos 0, lim cos 8,
06— 86— — «

do not exist. Figure 7.1.8 shows parts of the hyperreal graph of sin 0, for positive and
negative infinite values of 0, through infinite telescopes.
The motion of our particle traveling around the unit circle with speed one
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TN\

sin 6

o U: 3'7\/1r g
—14

T
—14+
cos
Figure 7.1.7
y
—— —2r
\
\k
N\ 7~ N\ 7N
N N’ "

negative infinite
Figure 7.1.8

positive infinite
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(cos 8, sin 8)

sin 8

cos 8 X

Figure 7.1.9

starting at (1, 0) (Figure 7.1.9) has the parametric equations
X = cos 6, y = sin 6.

The following table shows a few values of sin 8 and cos 8, for 8 in either
radians or degrees.

Table 7.1.1
T

. . n 7 i n 3n 3n
8 in radians 0 3 1 3 3 vy b3 > 2n
6 in degrees | O 30° 45° 60° 90°  135°  180° 270°  360°
sin 0 0 1/2 S22 3 1 J2/2 0o -1 0
cos 6 INEY, BN Y] 1/2 0 -J22 -1 0 1
I B
DEFINITION

The other trigonometric functions are defined as follows.

sin 0
tangent: tan 0 =
cos 0
cos @
cotangent : cot = —
sin 6
1
secant: secl =
cos 8
1
cosecant: csch = —
sin 8

These functions are defined everywhere except where there is a division by
zero. They are periodic with period 2zn. Their graphs are shown in Figure 7.1.10.

When 8 is strictly between 0 and #/2, trigonometric functions can be described
as the ratio of two sides of a right triangle with an angle 0. Let a be the side opposite
0, b the side adjacent to 0, ¢ the hypotenuse as in Figure 7.1.11. Comparing this triangle
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1 | N

o S P e

cot 6

fd
bl
5=

e

sec 8 csc 6
Figure 7.1.10

Figure 7.1.11 b

with a'similar triangle whose hypotenuse is a radius of the unit circle, we see that

sinf = —, secd = —, tan 0 =

5

cos @ =—, csc O = —, cotf =

QLI S
QIS SR

Ol ol
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cot §
?
') 3 | o‘ac‘
14 £ 5
y 1
(a) (b) (c)
sin ¢
- ol &
B\ cos f E 3 ¢ (i ,%
5,/cos—0 T; cos
T _
(e) $=7-"9
(d)
cos (A +¢) sin @ sin ¢

S EAN _

%‘/ & cos 6 sin ¢

1= .

«n oS ®

sinf cos ¢
[/
cos 8 cos ¢ I
(f)

Figure 7.1.12 (Continued)

Here is a table of trigonometric identities. The diagrams in Figure 7.1.12
suggest possible proofs. ((6) and (7) are called the addition formulas.)
(Figure 7.1.12(a))
(Figure 7.1.12(b))
cot?’8 + | =csc? @ (Figure 7.1.12(c))
s

) sin?@ + cos? O =1
)
)
4) sin(—0)= —sinf, cos(—0) =cosb (Figure 7.1.12(d))
)
)
)

tan?0 + 1 = sec? 0

sin(n/2 — 6) = cos 8, cos(n/2 —6)=sinb (Figure 7.1.12(¢))
sin (0 + ¢) = sin 8 cos ¢ + cos P sing (Figure 7.1.12(f))
cos(@ + ¢) = cosBcos ¢ — sinBsing (Figure 7.1.12(f))
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PROBLEMS FOR SECTION 7.1

In Problems 1-6, derive the given identity using the formula sin? 8 + cos? 8 = 1 and the addition
formulas for sin (8 + ¢) and cos (8 + ).

1 tan? 0 + 1 = sec? P 2 cos? @ + cos? Bcot? 0 = cot? 8
3 sin 26 = 2sin B cos 8 4 cos 20 = cos? @ — sin? @
. 1 —cost tan @ + tan ¢
210y _ _
) sin” (30) 3 6 tan (0 + ¢) | —tan0tang

In Problems 7-10, find all values of 0 for which the given equation is true.

7 sinf = cos 8 8 sinfcosf =0
9 sec =0 10 5sin30 =0
11 Find a value of 8 where sin 26 is not equal to 2 sin 0.

Determine whether the limits exist in Problems 12-17.

12 lim sin x 13 lim Slzx

14 lim x sin x 15 lirré x cos (1/x)
16 li[‘% cotx 17 ling tan x

18 Find all values of () where tan 0 is undefined.

19 Find all values of 8 where csc @ is undefined.

7.2 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS
THEOREM 1
The functions x = cos 0 and y = sin 0 are continuous for all 6.

PROOF We give the proof for 6 in the first quadrant, 0 < 6 < n/2. Let A@ be
infinitesimal and consider Figure 7.2.1.

Figure 7.2.1
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Let As = m be the length of the line PR. Then
0 < Area of quadrilateral QPOR < Area of sector POR,
0< 3 As < L A0

Thus As is infinitesimal. It follows that Ax and Ay are infinitesimal, whence
the functions x = cos 8, y = sin 8 are continuous.

THEOREM 2
The functions x = cos 0 and y = sin 0 are differentiable for all 6, and

d(sin 8) = cos 6 d0,
d(cos 8) = —sin 0 40.

Figure 7.2.2

Discussion  Intuitively, the small triangle in Figure 7.2.2 is infinitely close to a right
triangle with angle § and hypotenuse A, whence

Ay Ax

Y ) .
2y o 2 N _6in 0
6~C059, g~ sin

Notice that Ax is negative while Ay is positive when 0 is in the first quadrant.
The proof of Theorem 2 uses a lemma.

LEMMA
i im0 Gy il

-0 0 0-0 0

PROOF (i} We show that for any nonzero infinitesimal A0,

sin A9 ~ 1
AG T

When A0 is positive we draw the figure shown in Figure 7.2.3, We have

Area of triangle QOR < area of sector QOR < area of triangle QOS,
$sin AG < 1A < Ltan A6.
sin A sin A0 sin A6 sin Af
tanA0< Al <m, cos Af < Al

sin Af

Then

< 1.

Since cos § is continuous, cos Af x 1, whence x 1. The case A8 < 0

is similar.
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RS

sin A6
tan A6

Al |
Figure 7.2.3 PO

(ii) We compute the standard part of (cos AG — 1)/A0.

(cos AO — 1) ( cos? Af — 1 ) ( —sin? A0 )
Stl————| = st = St

Af AB(cos AG + 1) AB(cos AG + 1)
_ sin A9\ st(sinAf) 1 0_ 0
- AQ |sticos AO + 1) 2

PROOF OF THEOREM 2 Let Af be a nonzero infinitesimal. Then

d(sin ) St(sin (0 + AB) — sin 0)

do Af
_ St(sin 0 cos AO + cos 8sin A§ — sin 6)
Af
_ t(sin O(cos A8 — 1) + cos #sin A@)
AB
=sinf St(_‘_cos a0 - 1) + cos 8 st(sm AG)
AB A6

=sinf+0 4+ cosf+1 = cos 0.

Here is a second proof that the derivative of the sine is the cosine. It uses the

formula for the length of a curve in Section 6.3.

ALTERNATE PROOF OF THEOREM 2 (Optional) Let0 < 8 < 7/2 and
= cos 0, y = sin 6.

Then (x, y) is a point on the unit circle as shown in Figure 7.2.4.

Figure 7.2.4
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Take ) as the independent variable. Then

T dx —y ¥
X = L _— = .
N ’ dy 1 — 2 X

0 is the length of the arc from O to y, so

0 — f " S ey dy
0

By the Second Fundamental Theorem of Calculus,

10 /x4y 1
O v = T4 (2 =¥
dy X X
Then by the Chain Rule,
dy 1
5 = x,
a6 df/dy
and dx dxdy v
AR ot A VS
" dyd) - x :
Substituting cos 8 for x and sin 8 for y,
i d
_d(s;; 9 = cos 0, (CCI)HS 0 = —sin 6.
(

We can now find the derivatives of all the trigonometric functions by using
the Quotient Rule

L.Z

d(u) _ vdu — u d}
-

THEOREM 3
(1) d(sin 6) = cos 0 d0, d(cos B) = —sin 0 d6,
(i) d(tan ) = sec? 040, d(cot ) = —csc? 0do,

(iif) d(sec 8) = sec 0tan 8 d0, d(csc 8) = —cscOcot 0d0.

PROOF We prove the formula for d(tan 8) and leave the rest as problems.

sin 0
tanf = ——
an cos 0’
dtan 0) = d sin 6 _cos 0 d(sin 0) : sin 8 d(cos Q)
cos () cos* 0
et Y 2 1ia 2 0
__cos f cos 0 im 6 ( -sin -0)(1() _ cos’ () +7 smid()
cos* 0 cos” 0

1
_ “'75[10 = sec? 0 d0.
cos

These formulas lead at once to new integration formulas.
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THEOREM 4
0] Jcosedf):sinf)—l— C, fsin6d6= —cos 8 + C.
(i1) fsecz 0df =tan6 + C, J‘csc2 0d6 = —cot + C.

_(iii) Jsec@tan@d@ =secl + C, jcsc@cot@d@ = —¢scl + C.

We are not yet able to evaluate the integrals [ tan 6 d0, | cot 6 d6, | sec 8 o,
| csc 0 d6. These integrals will be found in the next chapter.

EXAMPLE 1 Find the derivative of y = tan?(3x).

dy = 2tan 3x d(tan 3x) = 2 tan 3x sec? 3x d(3x)
= 6 tan 3x sec? 3x dx.

. COSt
EXAMPLE 2 Evaluate lim ————.
tom2 t — )2

This is a limit of the form 0/0 because
. . s
lim cost = 0, lim (t——) =0.
t-nf2 t-n)2 2
By PHospital’s Rule (Section 5.2),

. cos t . —sint . n
lim = lim = —sin|=) = —1.
tox2t — w2 tomz 1

EXAMPLE 3 A particle travels around a vertical circle of radius r, with constant
angular velocity w = d6/dt, beginning with 8 = 0 at time ¢t = 0. If the sun
is directly overhead, find the position, velocity, and acceleration of the
shadow.

Let us center the circle at the origin in the (x, y) plane (Figure 7.2.5). Then

X = rgcos 6, y = rg sin 6.

Fo

Figure 7.2.5



378 7 TRIGONOMETRIC FUNCTIONS
At time 1, 0 has the value 8 = wt. So the motion of the particle is given by the
parametric equations
X = rycos (wt), 1= rg sin (wt).

The shadow is directly below the particle, and its position is given by the
x-component

X = ry cos (mt).

The velocity and acceleration of the shadow are

dx in (o)
p=— = —rowsin{w
dt 0 ’
dv
a= = —row? cos (wt).

EXAMPLE 4 A light beam on a 100 ft tower rotates in a vertical circle at the rate of
one revolution per second. Find the speed of the spot of light moving along
the ground at a point 1000 ft from the base of the tower.

We start by drawing the picture in Figure 7.2.6.

100 ft.

/

Figure 7.2.6 - X ;! ground

Assume the rotation is counterclockwise. Let ¢ be time and let x and 9 be as
in the figure. Then

do
{T = 2n radians/sec, x = 100 tan 6 ft.
4

We wish to find dx/dt when x = 1000.

d 10
o 100sec2 9 = 2007 sec? 6.
dt dt
When x = 1000,
sec’f =1+ tan?6=1+ (x/100)2 = 1 + 10% = 101.
dx
Therefore d‘; — 202007 ~ 63,000 ft/sec.

EXAMPLE 5 Find sin®rcostdt. Let u = sint, du = cos t dt.

4 g
Then Jsin3 rcostdt = Ju3 du = % +C = SH; t

+ C.

EXAMPLE 6 Find the area under one arch of the curve y = cos x.
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Figure 7.2.7

From Figure 7.2.7 we see that one arch lies between the limits x = — /2
and x = n/2, therefore the area is

nf2 /2
J costdt=sint] =1—-(-1)=2.

—nf2 —nf2

Trigonometric identities can often be used to get an integral into a form
which is easy to evaluate.

EXAMPLE 7 Evaluate | sec* x dx. Using the identity sec’> x = 1 + tan? x, we have

jsec"' xdx = J(I + tan? x) sec® x dx-

3x

+ C. .

t
= f(l + tan? x) d(tanx) = tan x + ar;

EXAMPLE 8 Find [./1 — cosxdx. Using the identity sin®x + cos®x = 1, we
have

,&__\/1 —cosx\/l + cos x \/l — cos? x
cos ¥ 1+ cosx 14+ cosx

_ /sin? x _ sinx]
1+ cosx \/1+cosx'

Case 7 In an interval where sin x > 0,

sin x
_J:/l—kcosxx f /1 + cos x

-2/1 4+ cosx + C.

f 1 — cos x dx ———————d(1 + cosx)

Case 2 In an interval where sin x < 0,

f,/l —cosxdx =2/1 +cosx + C.

PROBLEMS FOR SECTION 7.2

In Problems 1-14, find the derivative.
1 y = sin 5x 2 y = 3cos?x

3 x = sin (36%) 4 y = sec® x
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5 x = tan (40 — 3) 6 » o= xsinx
7 u=gasinf + bcosd 8 u = sin ((16) + cos (b8)
9 V= COoS , X 10 y= “cos x
11 v = tan{sin §) 12 y=sinftan0
1 2

= 14 =cot(t* 4+ 3r—-2
13 A + csc (31) ! ( )
15 Find dy:dx where x = sin® y
16 Find dy:dx where y = tan (xy)

In Problems 17-24, evaluate the limit if it exists.

17 lim 2sin® 0 18 lim csc x
0-n3 x—0
. sin?r
19 lim cscx 20 lim S
x—=0" -0 [
21 lim 12 2 lim 110
t—0 t G—n T —
sin (r?) .
23 lim 24 lim (secf — tan 8)
(~0 I8Nt O-n2

In Problems 25-34, find the maxima. minima, inflection points, and limits when necessary, and
sketch the curve for 0 < x < 27.

25 vy =3sinx 26 } = 8in X co8 X
27 y = sin?x 28 y = cos(2x)
29 y = sin (.\' — g) 30 » =secx
3 y=tanx 32 y=1-cosx
33 y=csc?x 34 y=x+sinx
0 35 Show that at lim sin (1.x) does not exist.
x—=0
O 36 Let f(x) = xsin(1:x), with f(0) = 0. Show that f is continuous but not differentiable
at x = 0.
In Problems 37-53, evaluate the integral.
37 fsin 2n dr 38 fsin X cosxdx
39 flan xsecd x dx 40 jtanl 0do
1 c
41 J. _cos\ /X dx 42 jtsm(r“ + 1)dr
43 fcot (56) csc (50) do 44 f\/f + sin 640

sin§ — cos 8
45 / secx — 14 4 (sin 6 = cos 0)2
fsec xy/secx — ldx 6 J(sin 6+ cos 07 "

47
1 + sin 0 o

1
49 J sec? 0.d0 50 J sin (7x) dx
0
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w2 2
51 f sin § + cos 8d6 52 f sec? x dx
/3 V]
/2
53 .[ cot x csc x dx
o
54 A revolving light one mile from shore sweeps out eight revolutions per minute. Find

the velocity of the beam of light along the shore at the instant when it makes an angle
of 45 with the shoreline.

55 A ball is thrown vertically upward from a point P so that its height at time ¢ is y =
100t — 1612 feet. @ is another point on the surface 100 ft from P. At time t = 5 find the
rate of change of the angle between the horizontal line QP and the line from @ to the ball.

56 Two hallways of width ¢ and b meet at right angles. Find the length of the longest rod
which can be slid on the floor around the corner.

57 Find the area under one arch of the curve y = 3 sin x.

58 Find the area under one arch of the curve y = sin (3x).

59 Find the area of the region between the curves y = sin x cos xand y = sin x,0 < x < 7/2.

60 The region between the x-axis and the curve y = tan x, 0 < x < /4, is rotated about the
x-axis. Find the volume of the solid of revolution.

61 The region between the x-axis and the curve y = (sin x)/x, n/2 < x < =, is rotated about
the y-axis. Find the volume of the solid of revolution.

62 Find the length of the parametric curve x = 2cos (3r), y = 2sin(31),0 <t < L.

63 Find the length of the parametric curve x = cos®t,y = sin’ 1,0 < t < 7/2.

64 Find the length of the parametric curve x = cos3t, y = sin®t,0 < t < n/2.

65 Find the area of the surface generated by rotating the curve in Problem 63 about the
X-axis.

66 Find the area of the surface generated by rotating the curve in Problem 64 about the
y-axis.

INVERSE TRIGONOMETRIC FUNCTIONS

Inverse functions were studied in Section 2.4. We now take up the topic again and
apply it to trigonometric functions. A binary relation on the real numbers is any set
of ordered pairs of real numbers. Thus a real function f of one variable is a binary
relation such that for each x, either there is exactly one y with (x, y) in f or there is
no y with (x, ¥) in f. (Other important relations are x < y,x < 3, x # y,x = y.)

DEFINITION

Let S be a binary relation on the real numbers. The inverse relation of S is the
set T of all ordered pairs (y, x) such that (x,y) is in S. If S and T are both
functions they are called inverse functions of each other.

The inverse of a function f may or may not be a function. For example, the
inverse of y = x? is the relation x = iﬁ, which is not a function (Figure 7.3.1).
But the inverse of y = x%, x = 0, is the function x = \/y (Figure 7.3.2).
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Geometrically, the graph of the inverse relation of y = f(x) can be obtained
by flipping the graph of y = f(x) about the diagonal line y = x (the dotted line in
Figures 7.3.1 and 7.3.2). This flipping interchanges the x- and y-axes. This is because
f(x) = y means (x, ) is in f, and g(y) = x means (y, x) is in g. It follows that:

If [ and g are inverse functions then the range of f is the domain of g and vice

versa.

Which functions have inverse functions? We can answer this question with

a definition and a simple theorem.

DEFINITION

A real function f with domain X is said to be one-to-one if f never takes the
same value twice, that is, for all x; # x, in X we have f(x;) # f(x,).

THEOREM 1

[ has an inverse function if and only if f is one-to-one.

PROOF The following statements are equivalent,

(1) fis a one-to-one function,

(2) For every y, either there is exactly one x with f(x) = y or there is no

x with f(x) = y.

(3) The equation y = f(x) determines x as a function of y.

(4) f has an inverse function.
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COROLLARY

Every function which is increasing on its domain I has an inverse function. So
does every function decreasing on its domain I.

PROOF Let f be increasing on I. For any two points x; # x, in I, the value of f
at the smaller of x,, x, is less than the value of f at the greater, so f(x,) #

Sf(x2)

For example, the function y = x? is not one-to-one because (—1)* = 12,
whence it has no inverse function. The function y = x2, x > 0, is increasing on its
domain [0, o) and thus has an inverse.

Now let us examine the trigonometric functions. The function y = sin x is
not one-to-one. For example, sin0 = 0,sinn = 0,sin 2rn = 0, etc. We can see in
Figure 7.3.3 that the inverse relation of y = sin x is not a function.

y N\

N

y=sinx not a function

Figure 7.3.2

However, the function y = sin x is increasing on the interval [—n/2, n/2),
because its derivative cosx is >0. So the sine function restricted to the interval

[—n/2, /2],
y = sin x, —7nf2 < x < nf2,

has an inverse function shown in Figure 7.3.4. This inverse is called the arcsine

¥ x
“
Y
LY
1
o
— = ] —+—
hig T X —
hSay) 2 ! [ Y
1]
1
X
‘\
~
y=sinx, —§<x<% x = arcsin y

Figure 7.3.4
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function. It is written x = arcsin y. Verbally, arcsin y is the angle x between —n/2
and n/2 whose sine is y.

The other trigonometric functions also are not one-to-one and thus do not
have inverse functions. However, in each case we obtain a one-to-one function by
restricting the domain to a suitable interval, either [ — /2, n/2] or [0, z}. The resulting
inverse functions are called the arccosine, arctangent, etc.

DEFINITION

The inverse trigonometric functions are defined as follows.

X = arcsin y is the inverse of y = sin x, —n/2 < x < nf2
X = arccos y is the inverse of y = cos x, O0<x<m
x = arctan y is the inverse of y = tan x, ~n/2 <x < nf2
x = arccot y is the inverse of y = cot x, O0<x<m
= arcsec y is the inverse of y = sec x, 0<x<nm
X = arcesc y is the inverse of y = csc x, —n/2 <x <n/2

The graphs of these functions are shown in Figure 7.3.5. The domains of the
inverse trigonometric functions can be read off from the graphs, and are shown in
the table below.

Table 7.3.1

Function Domain
arcsin y —-l<y<l
arccos y -l<y<i
arctan y whole real line
arccot whole real line
arcsec y y< -1, y>1
arcesc y y<—1, y>1

We can prove the inverse trigonometric functions have these domains (i.e.,
the figures are correct) using the Intermediate Value Theorem. As an illustration we
prove that arcsin y has domain [—1, 1).

arcsin y is undefined outside [—1,1] because —1 <sinx < [ for all x.
Suppose ygy is in [—1, 1]. Then

sin(—mn/2) = —1 < y, < 1 = sin (x/2).

sin x Is continuous, so by the Intermediate Value Theorem there exists x, between
—7/2 and n/2 such that sin x, = y,. Thus

arcsin y, = X,

and y, is in the domain of arcsin y.

EXAMPLE 1 Find arccos(\ﬁﬂ). From Table 7.1.1, cos(n/4)=\@/2. Since
0<n/4<m,

arccos (\/5/2) = n/4.
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x X
-1 I y -1 1 y
Xx = arcsin y X = arccos y

X x

N

Xx = arctan y Xx = arccot y

-1 1 Y \-'1 1 y

X = arcsec y X = arcesc y

Figure 7.3.5

EXAMPLE 2 Find arcsin(—1). From Table 7.1.1, sin (37/2) = — 1. But 3x/2 is not
in the interval [ — /2, 7/2]. Using sin (0 + 2nn) = sin 0, we have

sin (—n/2) = sin (3n/2) = —1,

o) arcsin(—1) = —n/2.

EXAMPLE 3 Find arctan _\/§)_ We must find a 6 in the interval [—n/2, 7/2] such
that tan 6 = —./3. From Table 7.1.1, sin (z/3) = \/5/2, cos (n/3) = 1/2.
Then sin (—n/3) = —+/3/2, cos (—n/3) = 1/2. So
—\ﬁ/2
= 3’
12 V3
arctan(—ﬁ) = —mn/3.

tan (—n/3) =
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EXAMPLE 4. Find cos (arctan y). Let § = arctan y. Thus tan 6 = y. Using

sin® 0 + cos? 0 =1

sin 0 o
cos 0 =0
we solve for cos 8.
sin @ = ycos 6, (ycos 0)* + cos? B = 1,
1
0P+ =1 20 = :
cos“ 0 (y + 1) , cos e
1
Thus coslf = +—m——.
¥+ 1

By definition of arctan y, we know that —zn/2 < 8 < n/2. In this interval,
cos 0 = 0. Therefore

oS ) = .
v+ 1

EXAMPLE 5 Show that arcsin y + arccos y = #/2 (Figure 7.3.6). Let 8 = arcsin y.
We have y = sin 8 = cos (n/2 — 0). Also, when —n/2 < 8 < n/2, we have

nf2 > —0 = —n/2, n>n/2—6>0.
Thus /2 — 0 = arccos y,
arcsin y + arccos y = 6 + (n/2 — 0) = =/2.

arccos y
_______ g —__F

_i [ Y

arcsin y

Figure 7.3.6

We shall next study the derivatives of the inverse trigonometric functions.
Here is a general theorem which tells us when the derivative of the inverse function
exists and gives a rule for computing its value.

INVERSE FUNCTION THEOREM

Suppose a real function f is differentiable on an open interval I and f has an

inverse function g. Let x be a point in I where f'(x) % 0 and let y = f(x).
Then
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() g0 exists,

1
a g0 7
We omit the proof that g'(y) exists. Intuitively, the curve y = f(x) has a non-
horizontal tangent line, so the curve x = g(y) should have a nonvertical tangent
line and thus g'(v) should exist.
The Inverse Function Rule from Chapter 2 says that (ii) is true if we assume
(i). The proof of (ii) from (i) is an application of the Chain Rule:

’ 7 ! 4 r 1
gfx)=x,  gUNfx)=1 g x)=1 g = ey
The Inverse Function Theorem shows that all the inverse trigonometric
functions have derivatives. We now evaluate these derivatives.

THEOREM 2
. . dx
(i) d(arcsinx) = — (where —1 < x < 1).
1 —x?
dx
dlarccos x) = — —————=  (where —1 < x < 1).
J1 = x2
dx
i d - )
(ii) d(arctan x) 5 2
dx
d(arccot x) = T
dx
(ii)) d(arcsec x) = ————= (where |x| > 1).

x|l /x> — 1
dx
d(arcesc x) = ——————
[l /x2 — 1

PROOF We prove the first part of (i) and (iti). Since the derivatives exist we may use
implicit differentiation.

(where |x| > 1).

(1) Lety = arcsin x. Then
x = sin y, —n/2 <y < nf2,
dx = cos ydy.
From sin? y + cos? y = 1 we get

cosy = +./1 —sin?y = +./1 — x2
Since —n/2 <y < n/2,cosy = 0. Then
cosy = /1 — x2

d>
Substituting, dx = /1 — x> dy, dy = "‘2_

1 —x

(i) Let y = arcsec x.
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Then X = Secy, 0<y<m,
dx = sec ytan y dy.
From tan’y + 1 =sec’y wegettany = +./sec’y — [ = +./x* — L

. 1 .
Since 0 < y < m,tan y and sec y = —— have the same sign.
cos y

Therefore secytany > 0
and dx = [sec ylftan y|dy = |x|./x* — 1 dy,
dx
dy

NN

When we turn these formulas for derivatives around we get some surprising
new integration formulas.

THEOREM 3

1 .
(1) f—w]x = arcsinx + C = —arccos x + C. (Provided that |x] < 1).

dx
ii =arctanx + C = —arccotx + C.
i [ i i

ch
(1i1) jllif;:l =arcsecx + C = —arcescx + C. (Provided that |x] > 1).
NIVAGES

From part (i), arcsin x and —arccos x must differ only by a constant. We
already knew this [rom Example 5,

arcsin x = —arccos x + m/2.

Before now we were not able to find the area of the regions under the curves
1 1 1

Vo= T )‘ =T 3 ’ D S

’ I - x 1+ x? ’ x/x? —1

It is a remarkable and quite unexpected fact that these areas are given by inverse
trigonometric functions.

EXAMPLE 6 (a) Find the area of the region under the curve

for -1 <x <L

(b)y Find the area of the region under the same curve for —x < x < =.
The regions are shown in Figure 7.3.7.

! 7

! 1
(a) A=fldex=arctanx:|—l :Z—
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Figure 7.3.7 -1 | 1 x

*® 1 0 1 © 1
A= dx = ——d —d
®) j_m1+x2x J,w1+x2x+fo T+

0 b

. 1
B e ®

lim

a=* — o

I

. 1+ x2

lim (arctanQ — arctan g) + lim (arctan b — arctan 0)

a—>— b—w

Il

= —lim arctan a + lim arctan b.

a——w b-

From the graph of arctan x we see that the first limit is —n/2 and the second
limit is =/2, so

Thus the region under y = 1/(1 + x?) has exactly the same area as the unit
circle, and half of this area is between x = —1 and x = 1.

_ﬁ 1
EXAMPLE 7 Find f ———dx.
—2 x/x*—1
The region is shown in Figure 7.3.8. Since x is negative, x = —|x|. Thus

-2 1 -2 1
J. ——dx = J- e —, |y
-2 x\/xz——_l -2 |x|\/;2_——1
-J2

= —arcsec x:l = —(arcsec(—ﬁ) — arcsec (—2))
-2
_ 3n 2y m
- \4 3 12
¥y
-2 -2
l X
\\‘
— i “\
y-X\/xﬂ—l \‘

Figure 7.3.8
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PROBLEMS FOR SECTION 7.3

In Problems 1-9, evaluate the given expression.

1
3
5
7
9

10
11
12
13

arcsin (\ﬁ/2)
arctan (— 1)
arcsec 2

sin {arccos x)

arcsin(cosx), O0<x<n

Prove the identity arctan (—x) =

W ™ AN

—arctan x,

Prove arctan (1/x) = arccot x, for 0 < x.

Prove arccos (—x) = = — arccos x.

Prove arctan x + arccot x =

n/2.

Find the derivatives in Problems 14-25.

14
16
18
20
22
24

26
27

28

29

y = arcsin (x/2)

y = (arcsin x)?

arctan \/:

)Y =
) = xarcsec x
¥ = arccos x + (x_/\/l_':?)

u=aresect + /17 — 1

Evaluate lim arccsc x.,

X o
Evaluate lim arctan x.

X -

. arcsin x
Evaluate lim
x—0 X

. arccot x
Evaluate im — .
x— 2 ATCCSC X

In Problems 30-47 evaluate the integrals.

30

32

34

36

38

40

42

J’ dx
1+ 4x2

dx
cOS X
J.l + sin? x dx

J‘xdx
* 1

1+ x)/

J i avs
J arctan x ;.
[
[

dx

37

39

41

43

arcsin (— 1/2)
sec (arctan (— 1))
arcsin (cos m)

cot (arcsec x}

y = arcsec (S5x — 2)

y = arcsin (x?)

§ = tarcsint

arcsin x + \ﬁ - x?
y = xarcsin x + \,m
arctan (1/\/;)

.’

-
Il

J‘ dx
9+ x?
dx
dx
xdx
f e
X
.J..\'\/x -1
arcsin x
N Jﬁ
1

1ox/x? =1

142 1
J‘ ?—;dY
o JI-x

dx



46

49
50

7.4 INTEGRATION BY PARTS

=1 dX «© dx
__%x 47 X
A 25x% +1 J‘Awa2+x2

Find the area of the region bounded by the x-axis and the curve y = 1/./1 — x2,
—-l<x<l
Find the area of the region under the curve y = 1/(x./x? — 1),1 < x < o0.

Find the area of the region bounded below by the line y = 4 and above by the curve
y =1+ 1),

INTEGRATION BY PARTS

One reason it is harder to integrate than differentiate is that for derivatives there is
both a Sum Rule and a Product Rule,

du + v) = du + dv, duv) = udv + vdu

while for integrals there is only a Sum Rule,

Jdu + dv = fdu + jdv.

The Sum Rule for integrals is obtained in a simple way by reversing the sum

rule for derivatives.

There is a way to turn the Product Rule for derivatives into a rule for integrals.

It no longer looks like a product rule, and is called integration by parts. Integration
by parts is a basic method which is needed for many integrals involving trigonometric
functions (and later exponential functions).

INDEFINITE INTEGRATION BY PARTS

Suppose, for x in an open interval I, that u and v depend on x and that du and

dv exist. Then
Ju dv = uv — fv du.

PROOF We use the Product Rule

udv + vdu = duv), udv = d(uv) — v du.

Integrating both sides with x as the independent variable,

ju dv = j(d(uu) —vdu) = jd(uv) — jv du = uv — fv du.

No constant of integration is needed because there are indefinite integrals on
both sides of the equation.

Integration by parts is useful whenever [vdu is easier to evaluate than a

given integral | u dv.

391
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EXAMPLE 1 Evaluate [ x sin x dx. Our plan is to break x sin x dx into a product of
the form u dv, evaluate the integrals [ dv and [ v du, and then use integration
by parts to get [ u dv. There are several choices we might make for v and dr,
and not all of them lead to a solution of the problem. Some guesswork is
required.

Il

First try: u=sinx,de = xdx. [do = [xdx =3x* + C. Take v
Next we find du and try to evaluate | v du.

2
Ix2,

du = cos x dx, fv du = j%xz cos x dx.

This integral looks harder than the one we started with, so we shall start
over with another choice of # and dt.

Second try: u = x,dv = sin x dx.
Jdr = ~[sinxd,\' = —cosx + C.
We take v = —cos x. This time we find du and easily evaluate [ v du.
du = dx, fudu:j—cosx:f,\cz—sinx+C1.

Finally we use the rule

J-Ll dv = uv — fv du,

stinxdx = x(—cosx) — (—sinx + C;),

or fxsinxdx= —xcosx + sinx + C.

EXAMPLE 2 Evaluate [arcsin x dx. A choice of « and dv which works is
1 = arcsin x, dv = dx.
We may take v = x. Then
dx
J1=x¥

fvdu=j%= -J1 = x*+C,.

Finally, farcsin xdx = xaresin x — (—./1 — x* + Cy),

farcsin xdx = xarcsinx + /1 — x2 + C.

du =

This integral and the similar formula for {arccos x dx are included in our
table at the end of the book. We shall see how to integrate the other inverse trigono-
metric functions in the next chapter.
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EXAMPLE 3 FEvaluate { x2 sin x dx. This requires two integrations by parts.
q g yp

Step 1 U= x2 dv = sin x dx,

du = 2xdx, fdv=fsinxdx= —cosx + C.
We take v = —cos x.

fxz sin x dx = uv — Jvdu = —x%cosx + fo cos x dx.

Step 2 Evaluate | 2x cos x dx.

U, = 2x, dv, = cos x dx,
du, = 2dx, J‘du1 = fcosxdx =sinx + C.

We take v, = sin x.

f2x cos xdx = u,v; — fvl du,

= 2xsinx — J2sinxdx

= 2xsinx + 2cos x + C.

Combining the two steps,

~l‘xzsinxdx= —x%cosx + 2xsinx + 2cosx + C.

Sometimes integration by parts will yield an equation in which the given

integral occurs on both sides. One can often solve for the answer.

EXAMPLE 4 Evaluate [ sin® 6 df. Let

u = sin 0, dv = sin 8 d0.
Then du = cos 0 d6, v = —cosb.

fsinZGdB = —sinfcos§ — f—coszé)d()
= —sinfcosf + fcosz()de

= —sinfcos + f(l — sin? 6) d0

—sinflcos® + 6 — jsinz 6 de.
We solve this equation for [ sin? 8 d6,

jsinZGdG = —3sinfcos® + 36 + C.
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Here is another way to evaluate | sin? § df. Instead of using integration by
parts, we can use the half-angle formula

sin? 0 = :i;)s (20)—,

This is derived from the addition formula,

cos (6 + ¢) = cos 8 cos ¢ — sin 8 sin ¢,
cos(26) = cos? 0 — sin?@ =1 — 2sin? G,

_ )
2
20,1 I
Then Jsm 0do = J ;OS = fdf) . —jcos 20 do

e 1
:EJdH ~choszad(ze) —H—Zsmze +C

This answer agrees with Example 4 because

sin 20 = sin (0 + 6) = 2 sin 8 cos 0,

1 1. [
S0 59 — Zsm 28 = i() — ismOcos 6.

Integration by parts requires a great deal of guesswork Given a problem
J h(x) dx we try to find a way to split /i(x) dx into a product f(x)g'(x) dx where we can
evaluate both of the integrals [ g'(x) dx andj 2(x) f'(x)dx.

Definite integrals take the following form when integration by parts is
applied.

DEFINITE INTEGRATION BY PARTS

If u= f(x) and v = g(x) have continuous derivatives on an open interval 1,
then for a,binl,

b b b
f F)gx) dx :f(x)g(x)] - f £(0) /() dx.

PROOF The Product Rule gives

fg'(x)dx + g(x)f'(x)dx = d(f(x)
Then by the Fundamental Theorem of Calculus,

b

b
j (f1)g'(x) + gx)f(x)dx = f(x)g(: }

a

and the desired result follows by the Sum Rule.

If we plot u = f(x) on one axis and v = g(x) on the other, we get a picture
of definite integration by parts (Figure 7.4.1). The picture is easier to interpret if we
change variables in the definite integrals and write the formula for integration by
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v=2g(x)
&(b) 7 /
/ A% ”)/ / zzz];;}///r//
&(a) ///[//u”/ l . \
- f()\ \\\\\ fb) %

Figure 7.4.1 Definite Integration by Parts

parts in the form

g(b) f(by
j wdo + f vdu = f(b)gb) — f(@)gla)

&(a) Sla)

EXAMPLE 5 Evaluate {7 x sin x dx (Figure 7.4.2). Take u = x,dv = sin xdx as in
Example 1. Then v = —cos x and

ki3 F(d 4
—[ xsinx dx = —xcosx} —J —cos x dx

[ 0 0

n T
= —XCOSX +sinx}
0 0

(—-n(-1)+0:1)+(0—-0)=m.

Il

Figure 7.4.2

PROBLEMS FOR SECTION 7.4

Evaluate the integrals in Problems 1-35.

1 fx cos x dx 2 farccos xdx

395
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3 jrl cos t dt 4 J\ arctan x dx
5 fz sin (2t — 1)dr 6 JalCSln (30) dt
7 J"( sin (4x) dx 8 J xarcsec x dx
9 J-\ arcsec x dx 10 J\3sm\d\
11 Jsin o xdx 12 Jsm 6tan® 0 do
13 jarctan o xdx 14 J X tan x sec? x dx
\.3
15 j LN 16 Jcos 0.d0
V=1
17 f\ sin x cos x dx 18 J rsin?tde
19 fsm 8 sin (26) d6 20 J cos x cos (3x)d
21 J.sm X cos (5x) dx 22 J cos x cot™ x dx
23 jﬁ sin (12) dt 24 J\3 cos (2x — 1)dx
1 1
25 J —5 sin (\) dx 26 J sin 8 cos 4 cos (sin 0) df
X X
L) 1 1
27 N 28 Jﬁ L
X
29 J 6 cos 8do 30 J arcsin x dx
4]
31 f sin® 0 d0 32 J arcsin x dx
(V] 4]
i
33 j xarccot x dx 34 J xarccot x dx
4] o]
35 J‘~ t arcsec f dt
1
36 Find the volume of the solid of revolution generated by rotating the region under the
curve y = sinx, 0 < x < 7, about (a) the x-axis, (b} the y-axis.
0 37 Prove that if / is a differentiable function of x, then
J_/‘(.\') dx = xf{x) — fx/"(x) dx.
0 38 If v and v are differentiable functions of x, show that
J‘u2 de = u?r — quv- du.
O 39 Show that if f” and g are differentiable for all x, then

j g0 (x) /(gL dx = f(gbNglx) — flglx) + C.
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7.5 INTEGRALS OF POWERS OF TRIGONOMETRIC FUNCTIONS

It is often possible to transform an integral into one of the forms

fsin" u du, fcos"u du, Jtan"u du, etc.

These integrals can be evaluated by means of reduction formulas, which express the
integral of the nth power of a trigonometric function in terms of the (n — 2)nd power.
The easiest reduction formulas to prove are those for the tangent and cotangent, so
we shall give them first.

THEOREM 1

Letn # 1. Then

n—1..

. tan X
(D Jtan"x dx = e J‘tan"*zx dx.
n—

. cot" 1x

(ii) fcot"x dx = — — "~ — jcot"‘zx dx.
n—1
PROOF We recall that
tan®x = sec?x — 1, d(tanx) = sec®x dx.

Then ftan"x dx = J-tan"*zxtanzx dx = ftan"‘zx (sec’>x — 1)dx
= jtan”’zxseczx dx — jtan"‘zx dx

= ftan”_zx d(tanx) — f tan" " 2 x dx

n—1

tan X
_— = ftan"’zx dx.
n—1
These reduction formulas are true for any rational number n # 1. They are
most useful, however, when n is a positive integer.

tanx
EXAMPLE 1 Jtanzx dx = - ftanoxdx = tanx — x + C.
tan®x tan’®x
EXAMPLE 2 ftan“xdx-z 3 —jtanzxdx: —tanx+x+ C.

tan®x
EXAMPLE 3 ftan3xdx= 5 —ftanxdx.

We will evaluate | tanx dx in the next chapter.
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Each time we use the reduction formula the exponent in the integral goes
down by two. By repeated use of the reduction formulas we can integrate any even
power of tanx or cotx. We can also work the integral of any odd power of tanx or
cotx down to an expression involving [ tanx or { cot x.

The reduction formulas for the other trigonometric functions are obtained
by using integration by parts.

THEOREM 2

Let n # 0. Then

, ) 1, n—1 .o
(1) J. sin"xdx = — ~sin" !xcosx + sin”~ % x dx.
n n

n—1

.. 1 o _
(i1) fcos"x dx = ~cos" 'xsinx + cos" 2 x dx.

n n

PROOF (i) Break the term sin"x dx into two parts,
sin”x dx = sin"~ ! x(sin x dx).
We shall let u = sin" 'x, = —COSX,

n—2

du = (n — 1)sin"~*x cosx dx, dv = sinx dx,

and use integration by parts. Then

~[sin”xdx = Judu= uy — fudu

= —sin""!xcosx — f(n — 1)(—cosx)sin"~ ?x cosx dx

= —sin" 'xcosx + (n — I)J. sin" "2 x(1 — sin®x) dx

—sin" " !xcosx + (n — 1)f sin" ?xdx — (n — I)J sin” x dx.

We find that {sin"x dx appears on both sides of the equation, and we solve
for it,

nf sin"xdx = —sin" " txcosx + (n — l)f sin"~ 2x dx,

n—1

- f sin"~ 2 x dx.

1alt —_ 1 gi— 1
sin"xdx = — —sin" " !xcosx +
H 4]

We already know the integrals
fsinx dx = —cosx + C, fcosx dx = sinx + C.

We can use the reduction formulas to integrate any positive power of sinx or cosx.
Again, the formulas are true where n is any rational number, n # 0.
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EXAMPLE 4 J-sinzx dx = —Lsinxcosx + %j dx = —isinxcosx + ix + C.

fcoszxdx = fcosxsinx + %f dx = Jcosxsinx + ix + C.

EXAMPLE 5 ~fcos3x dx = Jcos’xsinx + %f cosx dx

= {cos’xsinx + 4sinx + C.

THEOREM 3

Let m # 1. Then

1 . m—2
(i) ~[sec’"x dx = sec™ ! xsinx + Jsec’"‘zx ax.
m-—1 m—1
. 1 -2
(1) Jcsc"’x dx = — csc™ tx cosx + m——Jcsc""zx dx.
m—1 m—1

PROOF (ii) This can be done by integration by parts, but it is easier to use
Theorem 2. Let n = 2 — m. For m # 2, n # 0 and Theorem 2 gives

) 1 Lo 1 —m .
jsmz‘"‘x dx = — sin! "™xcosx + —— | sin""xdx,
2—m 2—m
_ 1 m— 1
f cse™ Zx dx = csc™ " lx cosx + csc™x dx,
m—2 m—2
1 m—2
whence jcsc"‘x dx = — 1c:sc""lxcosx + o csc” 2 x dx.
m— m —

For m = 2 the formula is already known,

fcsczx dx = —cotx + C = —cscxcosx + C.

These reduction formulas can be used to integrate any even power of secx or
cscx, and to get the integral of any odd power of secx or cscx in terms of | secx or
[ escx. We shall find [ secx and [ cscx in the next chapter.

EXAMPLE 6 Jsec-”x dx = Lsec’xsinx + %f secx dx.

EXAMPL